Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408051

RESUMEN

The existing sub-6 GHz band is insufficient to support the bandwidth requirement of emerging data-rate-hungry applications and Internet of Things devices, requiring ultrareliable low latency communication (URLLC), thus making the migration to millimeter-wave (mmWave) bands inevitable. A notable disadvantage of a mmWave band is the significant losses suffered at higher frequencies that may not be overcome by novel optimization algorithms at the transmitter and receiver and thus result in a performance degradation. To address this, Intelligent Reflecting Surface (IRS) is a new technology capable of transforming the wireless channel from a highly probabilistic to a highly deterministic channel and as a result, overcome the significant losses experienced in the mmWave band. This paper aims to survey the design and applications of an IRS, a 2-dimensional (2D) passive metasurface with the ability to control the wireless propagation channel and thus achieve better spectral efficiency (SE) and energy efficiency (EE) to aid the fifth and beyond generation to deliver the required data rate to support current and emerging technologies. It is imperative that the future wireless technology evolves toward an intelligent software paradigm, and the IRS is expected to be a key enabler in achieving this task. This work provides a detailed survey of the IRS technology, limitations in the current research, and the related research opportunities and possible solutions.

2.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430267

RESUMEN

Weft knitted conductive fabrics can act as excellent textile strain sensors for human motion capture. The loop architecture dictates the overall electrical properties of weft knit strain sensors. Therefore, research into loop architecture is relevant for comprehensively investigating the design space of e-textile sensors. There are three main types of knit stitches, Knitted loop stitch, Miss stitch, and Tuck stitch. Nevertheless, most of the research into weft knit strain sensors has largely focused on fabrics with only knitted loop stitches. Miss and tuck stitches will affect the contact points in the sensor and, consequently, its piezoresistivity. Therefore, this paper investigates the impact of incorporating miss and tuck stitches on the piezoresistivity of a weft knit sensor. Particularly, the electromechanical models of a miss stitch and a tuck stitch in a weft knit sensor are proposed. These models were used in order to develop loop configurations of sensors that consist of various percentages of miss or tuck stitches. Subsequently, the developed loop configurations were simulated while using LTspice and MATLAB software; and, verified experimentally through a tensile test. The experimental results closely agree with the simulated results. Furthermore, the results reveal that increases in the percentage of tuck or miss stitches in weft knit sensor decrease the initial and average resistance of the sensor. In addition, it was observed that, although the piezoresistivity of a sensor with tuck or miss stitches is best characterised as a quadratic polynomial, increases in the percentage of tuck stitches in the sensor increase the linearity of the sensor's piezoresistivity.

3.
Sensors (Basel) ; 19(17)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480709

RESUMEN

Internet of Things (IoT)-based automation of agricultural events can change the agriculture sector from being static and manual to dynamic and smart, leading to enhanced production with reduced human efforts. Precision Agriculture (PA) along with Wireless Sensor Network (WSN) are the main drivers of automation in the agriculture domain. PA uses specific sensors and software to ensure that the crops receive exactly what they need to optimize productivity and sustainability. PA includes retrieving real data about the conditions of soil, crops and weather from the sensors deployed in the fields. High-resolution images of crops are obtained from satellite or air-borne platforms (manned or unmanned), which are further processed to extract information used to provide future decisions. In this paper, a review of near and remote sensor networks in the agriculture domain is presented along with several considerations and challenges. This survey includes wireless communication technologies, sensors, and wireless nodes used to assess the environmental behaviour, the platforms used to obtain spectral images of crops, the common vegetation indices used to analyse spectral images and applications of WSN in agriculture. As a proof of concept, we present a case study showing how WSN-based PA system can be implemented. We propose an IoT-based smart solution for crop health monitoring, which is comprised of two modules. The first module is a wireless sensor network-based system to monitor real-time crop health status. The second module uses a low altitude remote sensing platform to obtain multi-spectral imagery, which is further processed to classify healthy and unhealthy crops. We also highlight the results obtained using a case study and list the challenges and future directions based on our work.


Asunto(s)
Agricultura/métodos , Tecnología Inalámbrica , Redes de Comunicación de Computadores , Productos Agrícolas , Humanos , Tecnología de Sensores Remotos
4.
Artículo en Inglés | MEDLINE | ID: mdl-34086574

RESUMEN

Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.


Asunto(s)
Redes Neurales de la Computación , Muñeca , Fenómenos Biomecánicos , Electromiografía , Humanos , Articulación de la Muñeca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA