Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(17): 1738-1751, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38215390

RESUMEN

ABSTRACT: In the effort to improve immunophenotyping and minimal residual disease (MRD) assessment in acute lymphoblastic leukemia (ALL), the international Berlin-Frankfurt-Münster (iBFM) Flow Network introduced the myelomonocytic marker CD371 for a large prospective characterization with a long follow-up. In the present study, we aimed to investigate the clinical and biological features of CD371-positive (CD371pos) pediatric B-cell precursor ALL (BCP-ALL). From June 2014 to February 2017, 1812 pediatric patients with newly diagnosed BCP-ALLs enrolled in trial AIEOP-BFM ALL 2009 were evaluated as part of either a screening (n = 843, Italian centers) or validation cohort (n = 969, other iBFM centers). Laboratory assessment at diagnosis consisted of morphological, immunophenotypic, and genetic analysis. Response assessment relied on morphology, multiparametric flow cytometry (MFC), and polymerase chain reaction (PCR)-MRD. At diagnosis, 160 of 1812 (8.8%) BCP-ALLs were CD371pos. This correlated with older age, lower ETV6::RUNX1 frequency, immunophenotypic immaturity (all P < .001), and strong expression of CD34 and of CD45 (P < .05). During induction therapy, CD371pos BCP-ALLs showed a transient myelomonocytic switch (mm-SW: up to 65.4% of samples at day 15) and an inferior response to chemotherapy (slow early response, P < .001). However, the 5-year event-free survival was 88.3%. Among 420 patients from the validation cohort, 27 of 28 (96.4%) cases positive for DUX4-fusions were CD371pos. In conclusion, in the largest pediatric cohort, CD371 is the most sensitive marker of transient mm-SW, whose recognition is essential for proper MFC MRD assessment. CD371pos is associated to poor early treatment response, although a good outcome can be reached after MRD-based ALL-related therapies.


Asunto(s)
Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Niño , Masculino , Femenino , Preescolar , Adolescente , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Lactante , Neoplasia Residual/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Tetraspaninas/genética , Tetraspaninas/metabolismo , Inmunofenotipificación , Linaje de la Célula
2.
Blood ; 142(20): 1740-1751, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37738562

RESUMEN

Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.


Asunto(s)
Histiocitosis , Proteínas Quinasas Activadas por Mitógenos , Humanos , Histiocitosis/genética , Histiocitosis/patología , Mutación , Receptores Toll-Like , Inflamación/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo
3.
Genes Chromosomes Cancer ; 63(5): e23242, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738968

RESUMEN

Constitutional polymorphisms in ARID5B are associated with an increased risk of developing high hyperdiploid (HeH; 51-67 chromosomes) pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL). Here, we investigated constitutional and somatic ARID5B variants in 1335 BCP ALL cases from five different cohorts, with a particular focus on HeH cases. In 353 HeH ALL that were heterozygous for risk alleles and trisomic for chromosome 10, where ARID5B is located, a significantly higher proportion of risk allele duplication was seen for the SNPs rs7090445 (p = 0.009), rs7089424 (p = 0.005), rs7073837 (p = 0.03), and rs10740055 (p = 0.04). Somatic ARID5B deletions were seen in 16/1335 cases (1.2%), being more common in HeH than in other genetic subtypes (2.2% vs. 0.4%; p = 0.002). The expression of ARID5B in HeH cases with genomic deletions was reduced, consistent with a functional role in leukemogenesis. Whole-genome sequencing and RNA-sequencing in HeH revealed additional somatic events involving ARID5B, resulting in a total frequency of 3.6% of HeH cases displaying a somatic ARID5B aberration. Overall, our results show that both constitutional and somatic events in ARID5B are involved in the leukemogenesis of pediatric BCP ALL, particularly in the HeH subtype.


Asunto(s)
Proteínas de Unión al ADN , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Factores de Transcripción , Niño , Preescolar , Femenino , Humanos , Masculino , Proteínas de Unión al ADN/genética , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Factores de Transcripción/genética
4.
Mol Cancer ; 23(1): 138, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970095

RESUMEN

BACKGROUND: The BCR::ABL1 is a hallmark of chronic myeloid leukemia (CML) and is also found in acute lymphoblastic leukemia (ALL). Most genomic breaks on the BCR side occur in two regions - Major and minor - leading to p210 and p190 fusion proteins, respectively. METHODS: By multiplex long-distance PCR or next-generation sequencing technology we characterized the BCR::ABL1 genomic fusion in 971 patients (adults and children, with CML and ALL: pediatric ALL: n = 353; pediatric CML: n = 197; adult ALL: n = 166; adult CML: n = 255 patients) and designed "Break-App" web tool to allow visualization and various analyses of the breakpoints. Pearson's Chi-Squared test, Kolmogorov-Smirnov test and logistic regression were used for statistical analyses. RESULTS: Detailed analysis showed a non-random distribution of breaks in both BCR regions, whereas ABL1 breaks were distributed more evenly. However, we found a significant difference in the distribution of breaks between CML and ALL. We found no association of breakpoints with any type of interspersed repeats or DNA motifs. With a few exceptions, the primary structure of the fusions suggests non-homologous end joining being responsible for the BCR and ABL1 gene fusions. Analysis of reciprocal ABL1::BCR fusions in 453 patients showed mostly balanced translocations without major deletions or duplications. CONCLUSIONS: Taken together, our data suggest that physical colocalization and chromatin accessibility, which change with the developmental stage of the cell (hence the difference between ALL and CML), are more critical factors influencing breakpoint localization than presence of specific DNA motifs.


Asunto(s)
Puntos de Rotura del Cromosoma , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas de Fusión bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Adulto , Niño , Masculino , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento
5.
Blood ; 136(8): 946-956, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32384149

RESUMEN

Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene in 13q12.2 are among the most common driver events in acute leukemia, leading to increased cell proliferation and survival through activation of the phosphatidylinositol 3-kinase/AKT-, RAS/MAPK-, and STAT5-signaling pathways. In this study, we examine the pathogenetic impact of somatic hemizygous 13q12.2 microdeletions in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) using 5 different patient cohorts (in total including 1418 cases). The 13q12.2 deletions occur immediately 5' of FLT3 and involve the PAN3 locus. By detailed analysis of the 13q12.2 segment, we show that the deletions lead to loss of a topologically associating domain border and an enhancer of FLT3. This results in increased cis interactions between the FLT3 promoter and another enhancer located distally to the deletion breakpoints, with subsequent allele-specific upregulation of FLT3 expression, expected to lead to ligand-independent activation of the receptor and downstream signaling. The 13q12.2 deletions are highly enriched in the high-hyperdiploid BCP ALL subtype (frequency 3.9% vs 0.5% in other BCP ALL) and in cases that subsequently relapsed. Taken together, our study describes a novel mechanism of FLT3 involvement in leukemogenesis by upregulation via chromatin remodeling and enhancer hijacking. These data further emphasize the role of FLT3 as a driver gene in BCP ALL.


Asunto(s)
Trastornos de los Cromosomas/genética , Elementos de Facilitación Genéticos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Tirosina Quinasa 3 Similar a fms/genética , Línea Celular , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Deleción Cromosómica , Trastornos de los Cromosomas/complicaciones , Cromosomas Humanos Par 13/genética , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Regulación Leucémica de la Expresión Génica , Humanos , Análisis por Micromatrices , Polimorfismo de Nucleótido Simple , RNA-Seq , Regulación hacia Arriba/genética , Secuenciación Completa del Genoma
6.
Pediatr Blood Cancer ; 69(9): e29779, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35592935

RESUMEN

Daratumumab, an anti-CD38 antibody, is used experimentally in the treatment of relapsed acute lymphoblastic leukemia (ALL). We treated five patients suffering from relapsed ALL with daratumumab. Four patients had T ALL, three of whom achieved complete remission (CR) after treatment and underwent stem cell transplant (SCT). Two of them had a second relapse and died 6 and 8 months after SCT, respectively. One transplanted T ALL patient remained in CR2 15 months after relapse. In the remaining T-ALL patient, the disease progressed under daratumumab treatment, and the patient died early after the first relapse. The B-cell precursor ALL patient with a second CD19-negative relapse, whose disease turned out to be resistant to the combination of daratumumab with chemotherapy, later achieved CR3 with inotuzumab ozogamicin, underwent SCT and remained in CR3. Leukemia burden should be monitored after daratumumab, and care should be taken not to misclassify leukemic cells with false negativity of surface CD38; using an antibody reacting with nondaratumumab epitopes is advantageous.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Recurrencia , Inducción de Remisión
7.
Haematologica ; 106(8): 2066-2075, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32646889

RESUMEN

Recently, we described B-cell precursor acute lymphoblastic leukemia (BCP-ALL) subtype with early switch to the monocytic lineage and loss of the B-cell immunophenotype, including CD19 expression. Thus far, the genetic background has remained unknown. Among 726 children consecutively diagnosed with BCP-ALL, 8% patients experienced switch detectable by flow cytometry (FC). Using exome and RNA sequencing, switch was found to positively correlate with three different genetic subtypes: PAX5-P80R mutation (5 cases with switch out of 5), rearranged DUX4 (DUX4r; 30 cases of 41) and rearranged ZNF384 (ZNF384r; 4 cases of 10). Expression profiles or phenotypic patterns correlated with genotypes, but within each genotype they could not identify cases who subsequently switched. If switching was not taken into account, the B-cell-oriented FC assessment underestimated the minimal residual disease level. For patients with PAX5-P80R, a discordance between FC-determined and PCR-determined MRD was found on day 15, resulting from a rapid loss of the B-cell phenotype. Discordance on day 33 was observed in all the DUX4r, PAX5-P80R and ZNF384r subtypes. Importantly, despite the substantial phenotypic changes, possibly even challenging the appropriateness of BCP-ALL therapy, the monocytic switch was not associated with a higher incidence of relapse and poorer prognosis in patients undergoing standard ALL treatment.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfocitos B , Humanos , Inmunofenotipificación , Mutación , Neoplasia Residual , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
8.
Blood ; 132(3): 264-276, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-29720486

RESUMEN

Despite attempts to improve the definitions of ambiguous lineage leukemia (ALAL) during the last 2 decades, general therapy recommendations are missing. Herein, we report a large cohort of children with ALAL and propose a treatment strategy. A retrospective multinational study (International Berlin-Frankfurt-Münster Study of Leukemias of Ambiguous Lineage [iBFM-AMBI2012]) of 233 cases of pediatric ALAL patients is presented. Survival statistics were used to compare the prognosis of subsets and types of treatment. Five-year event-free survival (EFS) of patients with acute lymphoblastic leukemia (ALL)-type primary therapy (80% ± 4%) was superior to that of children who received acute myeloid leukemia (AML)-type or combined-type treatment (36% ± 7.2% and 50% ± 12%, respectively). When ALL- or AML-specific gene fusions were excluded, 5-year EFS of CD19+ leukemia was 83% ± 5.3% on ALL-type primary treatment compared with 0% ± 0% and 28% ± 14% on AML-type and combined-type primary treatment, respectively. Superiority of ALL-type treatment was documented in single-population mixed phenotype ALAL (using World Health Organization and/or European Group for Immunophenotyping of Leukemia definitions) and bilineal ALAL. Treatment with ALL-type protocols is recommended for the majority of pediatric patients with ALAL, including cases with CD19+ ALAL. AML-type treatment is preferred in a minority of ALAL cases with CD19- and no other lymphoid features. No overall benefit of transplantation was documented, and it could be introduced in some patients with a poor response to treatment. As no clear indicator was found for a change in treatment type, this is to be considered only in cases with ≥5% blasts after remission induction. The results provide a basis for a prospective trial.


Asunto(s)
Leucemia Bifenotípica Aguda/diagnóstico , Leucemia Bifenotípica Aguda/terapia , Adolescente , Biomarcadores , Biomarcadores de Tumor , Niño , Preescolar , Terapia Combinada , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Humanos , Lactante , Recién Nacido , Leucemia Bifenotípica Aguda/etiología , Masculino , Pronóstico , Modelos de Riesgos Proporcionales , Resultado del Tratamiento
9.
Haematologica ; 105(7): 1887-1894, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31601692

RESUMEN

ABL-class fusions other than BCR-ABL1 characterize around 2-3% of precursor B-cell acute lymphoblastic leukemia. Case series indicated that patients suffering from these subtypes have a dismal outcome and may benefit from the introduction of tyrosine kinase inhibitors. We analyzed clinical characteristics and outcome of 46 ABL-class fusion positive cases other than BCR-ABL1 treated according to AIEOP-BFM (Associazione Italiana di Ematologia-Oncologia Pediatrica-Berlin-Frankfurt-Münster) ALL 2000 and 2009 protocols; 13 of them received a tyrosine kinase inhibitor (TKI) during different phases of treatment. ABL-class fusion positive cases had a poor early treatment response: minimal residual disease levels of ≥5×10-4 were observed in 71.4% of patients after induction treatment and in 51.2% after consolidation phase. For the entire cohort of 46 cases, the 5-year probability of event-free survival was 49.1+8.9% and that of overall survival 69.6+7.8%; the cumulative incidence of relapse was 25.6+8.2% and treatment-related mortality (TRM) 20.8+6.8%. One out of 13 cases with TKI added to chemotherapy relapsed while eight of 33 cases without TKI treatment suffered from relapse, including six in 17 patients who had not received hematopoietic stem cell transplantation. Stem cell transplantation seems to be effective in preventing relapses (only three relapses in 25 patients), but was associated with a very high TRM (6 patients). These data indicate a major need for an early identification of ABL-class fusion positive acute lymphoblastic leukemia cases and to establish a properly designed, controlled study aimed at investigating the use of TKI, the appropriate chemotherapy backbone and the role of hematopoietic stem cell transplantation. (Registered at: clinicaltrials.gov identifier: NTC00430118, NCT00613457, NCT01117441).


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Linfocitos B , Niño , Humanos , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pronóstico , Recurrencia
10.
BMC Cancer ; 20(1): 526, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503472

RESUMEN

BACKGROUND: Effectiveness of L-asparaginase administration in acute lymphoblastic leukemia treatment is mirrored in the overall outcome of patients. Generally, leukemia patients differ in their sensitivity to L-asparaginase; however, the mechanism underlying their inter-individual differences is still not fully understood. We have previously shown that L-asparaginase rewires the biosynthetic and bioenergetic pathways of leukemia cells to activate both anti-leukemic and pro-survival processes. Herein, we investigated the relationship between the metabolic profile of leukemia cells and their sensitivity to currently used cytostatic drugs. METHODS: Altogether, 19 leukemia cell lines, primary leukemia cells from 26 patients and 2 healthy controls were used. Glycolytic function and mitochondrial respiration were measured using Seahorse Bioanalyzer. Sensitivity to cytostatics was measured using MTS assay and/or absolute count and flow cytometry. Mitochondrial membrane potential was determined as TMRE fluorescence. RESULTS: Using cell lines and primary patient samples we characterized the basal metabolic state of cells derived from different leukemia subtypes and assessed their sensitivity to cytostatic drugs. We found that leukemia cells cluster into distinct groups according to their metabolic profile. Lymphoid leukemia cell lines and patients sensitive to L-asparaginase clustered into the low glycolytic cluster. While lymphoid leukemia cells with lower sensitivity to L-asparaginase together with resistant normal mononuclear blood cells gathered into the high glycolytic cluster. Furthermore, we observed a correlation of specific metabolic parameters with the sensitivity to L-asparaginase. Greater ATP-linked respiration and lower basal mitochondrial membrane potential in cells significantly correlated with higher sensitivity to L-asparaginase. No such correlation was found in the other cytostatic drugs tested by us. CONCLUSIONS: These data support that cell metabolism plays a prominent role in the treatment effect of L-asparaginase. Based on these findings, leukemia patients with lower sensitivity to L-asparaginase with no specific genetic characterization could be identified by their metabolic profile.


Asunto(s)
Antineoplásicos/farmacología , Asparaginasa/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adolescente , Antineoplásicos/uso terapéutico , Asparaginasa/uso terapéutico , Vías Biosintéticas/efectos de los fármacos , Médula Ósea/patología , Línea Celular Tumoral , Niño , Preescolar , Resistencia a Antineoplásicos , Femenino , Glucólisis/efectos de los fármacos , Humanos , Lactante , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Metaboloma/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Resultado del Tratamiento , Adulto Joven
11.
Blood ; 129(20): 2771-2781, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28331056

RESUMEN

We used the genomic breakpoint between BCR and ABL1 genes for the DNA-based monitoring of minimal residual disease (MRD) in 48 patients with childhood acute lymphoblastic leukemia (ALL). Comparing the results with standard MRD monitoring based on immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements and with quantification of IKZF1 deletion, we observed very good correlation for the methods in a majority of patients; however, >20% of children (25% [8/32] with minor and 12.5% [1/8] with major-BCR-ABL1 variants in the consecutive cohorts) had significantly (>1 log) higher levels of BCR-ABL1 fusion than Ig/TCR rearrangements and/or IKZF1 deletion. We performed cell sorting of the diagnostic material and assessed the frequency of BCR-ABL1-positive cells in various hematopoietic subpopulations; 12% to 83% of non-ALL B lymphocytes, T cells, and/or myeloid cells harbored the BCR-ABL1 fusion in patients with discrepant MRD results. The multilineage involvement of the BCR-ABL1-positive clone demonstrates that in some patients diagnosed with BCR-ABL1-positive ALL, a multipotent hematopoietic progenitor is affected by the BCR-ABL1 fusion. These patients have BCR-ABL1-positive clonal hematopoiesis resembling a chronic myeloid leukemia (CML)-like disease manifesting in "lymphoid blast crisis." The biological heterogeneity of BCR-ABL1-positive ALL may impact the patient outcomes and optimal treatment (early stem cell transplantation vs long-term administration of tyrosine-kinase inhibitors) as well as on MRD testing. Therefore, we recommend further investigations on CML-like BCR-ABL1-positive ALL.


Asunto(s)
Rotura Cromosómica , Proteínas de Fusión bcr-abl/genética , Genoma Humano , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Niño , Preescolar , Eliminación de Gen , Hematopoyesis , Humanos , Factor de Transcripción Ikaros/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/sangre , Recuento de Leucocitos , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Receptores de Antígenos de Linfocitos T/genética , Resultado del Tratamiento
13.
Haematologica ; 104(7): 1407-1416, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630977

RESUMEN

ERG-deletions occur recurrently in acute lymphoblastic leukemia, especially in the DUX4-rearranged subtype. The ERG-deletion was shown to positively impact prognosis of patients with IKZF1-deletion and its presence precludes assignment into IKZF1 plus group, a novel high-risk category on AIEOP-BFM ALL trials. We analyzed the impact of different methods on ERG-deletion detection rate, evaluated ERG-deletion as a potential marker for DUX4-rearranged leukemia, studied its associations with molecular and clinical characteristics within this leukemia subtype, and analyzed its clonality. Using single-nucleotide-polymorphism array, genomic polymerase chain reaction (PCR) and amplicon-sequencing we found ERG-deletion in 34% (16 of 47), 66% (33 of 50) and 78% (39 of 50) of DUX4-rearranged leukemia, respectively. False negativity of ERG-deletion by single-nucleotide-polymorphism array caused IKZF1 plus misclassification in 5 patients. No ERG-deletion was found outside the DUX4-rearranged cases. Within DUX4-rearranged leukemia, the ERG-deletion was associated with higher total number of copy-number aberrations, and, importantly, the ERG-deletion positivity by PCR was associated with better outcome [5-year event-free survival (EFS), ERG-deletion-positive 93% vs. ERG-deletion-negative 68%, P=0.022; 5-year overall survival (OS), ERG-deletion-positive 97% vs. ERG-deletion-negative 75%, P=0.029]. Ultra-deep amplicon-sequencing revealed distinct co-existing ERG-deletions in 22 of 24 patients. In conclusion, our data demonstrate inadequate sensitivity of single-nucleotide-polymorphism array for ERG-deletion detection, unacceptable for proper IKZF1 plus classification. Even using more sensitive methods (PCR/amplicon-sequencing) for its detection, ERG-deletion is absent in 22-34% of DUX4-rearranged leukemia and does not represent an adequately sensitive marker of this leukemia subtype. Importantly, the ERG-deletion potentially stratifies the DUX4-rearranged leukemia into biologically/clinically distinct subsets. Frequent polyclonal pattern of ERG-deletions shows that late origin of this lesion is more common than has been previously described.


Asunto(s)
Biomarcadores de Tumor/genética , Eliminación de Gen , Reordenamiento Génico , Proteínas de Homeodominio/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Adolescente , Niño , Preescolar , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/clasificación , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Regulador Transcripcional ERG/genética
14.
Haematologica ; 104(7): 1396-1406, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630978

RESUMEN

Novel biological subtypes and clinically important genetic aberrations (druggable lesions, prognostic factors) have been described in B-other acute lymphoblastic leukemia (ALL) during the last decade; however, due to a lack of studies on unselected cohorts, their population frequency and mutual associations still have to be established. We studied 110 consecutively diagnosed and uniformly treated childhood B-other patients using single nucleotide polymorphism arrays and whole exome/transcriptome sequencing. The frequency of DUX4-rearranged, BCR-ABL1-like, ZNF384-rearranged, ETV6-RUNX1-like, iAMP21 and MEF2D-rearranged subtypes was 27%, 15%, 5%, 5%, 4%, and 2%, respectively; 43% of cases were not classified into any of these subtypes (B-rest). We found worse early response to treatment in DUX4-rearranged leukemia and a strong association of ZNF384-rearranged leukemia with B-myeloid immunophenotype. Of the druggable lesions, JAK/STAT-class and RAS/RAF/MAPK-class aberrations were found in 21% and 43% of patients, respectively; an ABL-class aberration was found in one patient. A recently described negative prognostic factor, IKZF1plus , was found in 14% of patients and was enriched in (but not exclusive for) BCR-ABL1-like subtype. PAX5 fusions (including 4 novel), intragenic amplifications and P80R mutations were mutually exclusive and only occurred in the B-rest subset, altogether accounting for 20% of the B-other group. PAX5 P80R was associated with a specific gene expression signature, potentially defining a novel leukemia subtype. Our study shows unbiased European population-based frequencies of novel ALL subtypes, recurrent (cyto)genetic aberrations and their mutual associations. This study also strengthens and widens the current knowledge of B-other ALL and provides an objective basis for optimization of current genetic diagnostics.


Asunto(s)
Biomarcadores de Tumor/genética , Aberraciones Cromosómicas , Genómica/métodos , Mutación , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transcriptoma , Adolescente , Niño , Preescolar , Estudios de Cohortes , Europa (Continente) , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/epidemiología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Pronóstico
15.
Genes Chromosomes Cancer ; 57(9): 471-477, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29726059

RESUMEN

Fusion genes resulting from chromosomal rearrangements represent a hallmark of childhood acute lymphoblastic leukemia (ALL). Unlike more common fusion genes generated via simple reciprocal chromosomal translocations, formation of the ETV6-ABL1 fusion gene requires 3 DNA breaks and usually results from an interchromosomal insertion. We report a child with ALL in which a single interchromosomal insertion led to the formation of ETV6-ABL1 and 2 novel fusion genes: AIF1L-ETV6 and ABL1-AIF1L. We demonstrate the prenatal origin of this complex chromosomal rearrangement, which apparently initiated the leukemogenic process, by successful backtracking of the ETV6-ABL1 fusion into the patient's archived neonatal blood. We cloned coding sequences of AIF1L-ETV6 and ABL1-AIF1L in-frame fusion transcripts from the patient's leukemic blasts and we show that the chimeric protein containing the DNA binding domain of ETV6 is expressed from the AIF1L-ETV6 transcript and localized in both the cytoplasm and nucleus of transfected HEK293T cells. Transcriptomic and genomic profiling of the diagnostic bone marrow sample revealed Ph-like gene expression signature and loss of the IKZF1 and CDKN2A/B genes, the typical genetic lesions accompanying ETV6-ABL1-positive ALL. The prenatal origin of the rearrangement confirms that ETV6-ABL1 is not sufficient to cause overt leukemia, even when combined with the 2 novel fusions. We did not find the AIF1L-ETV6 and ABL1-AIF1L fusions in other ETV6-ABL1-positive ALL. Nevertheless, functional studies would be needed to establish the biological role of AIF1L-ETV6 and ABL1-AIF1L and to determine whether they contribute to leukemogenesis and/or to the final leukemia phenotype.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Oncogénicas v-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Proteínas de Unión al Calcio , Aberraciones Cromosómicas , Proteínas de Unión al ADN/sangre , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Hibridación Fluorescente in Situ , Recién Nacido , Cariotipificación , Masculino , Proteínas de Microfilamentos , Proteínas Oncogénicas v-abl/sangre , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-ets/sangre , Proteínas Represoras/sangre , Transcriptoma/genética , Translocación Genética/genética , Proteína ETS de Variante de Translocación 6
17.
Genes Chromosomes Cancer ; 56(8): 608-616, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28395118

RESUMEN

We have shown previously that ETV6/RUNX1-positive acute lymphoblastic leukemia (ALL) is distinguishable from other ALL subtypes by CD27pos /CD44low-neg immunophenotype. During diagnostic immunophenotyping of 573 childhood B-cell precursor ALL (BCP-ALL), we identified eight cases with this immunophenotype among "B-other ALL" (BCP-ALL cases negative for routinely tested chromosomal/genetic aberrations). We aimed to elucidate whether these cases belong to the recently described ETV6/RUNX1-like ALL defined by the ETV6/RUNX1-specific gene expression profile (GEP), harboring concurrent ETV6 and IKZF1 lesions. We performed comprehensive genomic analysis using single nucleotide polymorphism arrays, whole exome and transcriptome sequencing and GEP on microarrays. In unsupervised hierarchical clustering based on GEP, five out of seven analyzed CD27pos /CD44low-neg B-other cases clustered with ETV6/RUNX1-positive ALL and were thus classified as ETV6/RUNX1-like ALL. The two cases clustering outside ETV6/RUNX1-positive ALL harbored a P2RY8/CRLF2 fusion with activating JAK2 mutations and a TCF3/ZNF384 fusion, respectively, assigning them to other ALL subtypes. All five ETV6/RUNX1-like cases harbored ETV6 deletions; uniform intragenic ARPP21 deletions and various IKZF1 lesions were each found in three ETV6/RUNX1-like cases. The frequency of ETV6 and ARPP21 deletions was significantly higher in ETV6/RUNX1-like ALL compared with a reference cohort of 42 B-other ALL. In conclusion, we show that ETV6/RUNX1-like ALL is associated with CD27pos /CD44low-neg immunophenotype and identify ARPP21 deletions to contribute to its specific genomic profile enriched for ETV6 and IKZF1 lesions. In conjunction with previously published data, our study identifies the ETV6 lesion as the only common genetic aberration and thus the most likely key driver of ETV6/RUNX1-like ALL.


Asunto(s)
Linfocitos B/inmunología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Fusión Oncogénica/genética , Fenotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Niño , Preescolar , Femenino , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Inmunofenotipificación , Lactante , Masculino , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
18.
Genes Chromosomes Cancer ; 55(9): 727-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27163296

RESUMEN

Acute lymphoblastic leukaemias (ALL) with 51-67 chromosomes are defined as high hyperdiploid (HHD) and are generally associated with good prognosis. However, several studies show heterogeneity in HHD ALL and suggest that the favourable prognosis is associated rather with higher ploidy defined by DNA index (DNAi) ≥ 1.16 or with a presence of specific single or combined trisomies. HHD ALL with DNAi < 1.16 are only rarely studied separately. Using single nucleotide polymorphism array, we analysed 89 childhood HHD ALL patients divided into groups with lower (<1.16; n = 34) and higher (≥1.16; n = 55) DNAi. We assessed treatment response, presence of secondary aberrations, mutations in RAS pathway genes and CREBBP and also gene expression profile (GEP) to reveal differences between the two subgroups. Cases with 51-54 chromosomes had DNAi 1.1-1.16 and cases with 55-67 chromosomes had DNAi ≥ 1.16. The groups with lower and higher DNAi had distinct response to early treatment and distinct GEP. The better response of the group with higher DNAi was associated with specific trisomies (trisomy of chromosome 10 or combined with trisomies 4 and/or 17). Our results suggest that cytogenetically defined HHD ALL can in fact be divided into two biologically distinguishable subgroups and that DNAi 1.16 is a relevant value to separate between the two. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Aberraciones Cromosómicas/efectos de los fármacos , ADN de Neoplasias/genética , Perfilación de la Expresión Génica , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prednisona/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Cariotipificación , Masculino , Estadificación de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Tasa de Supervivencia
19.
Hum Mol Genet ; 23(3): 590-601, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24045615

RESUMEN

Acute lymphoblastic leukemia (ALL) accounts for ∼25% of pediatric malignancies. Of interest, the incidence of ALL is observed ∼20% higher in males relative to females. The mechanism behind the phenomenon of sex-specific differences is presently not understood. Employing genome-wide genetic aberration screening in 19 ALL samples, one of the most recurrent lesions identified was monoallelic deletion of the 5' region of SLX4IP. We characterized this deletion by conventional molecular genetic techniques and analyzed its interrelationships with biological and clinical characteristics using specimens and data from 993 pediatric patients enrolled into trial AIEOP-BFM ALL 2000. Deletion of SLX4IP was detected in ∼30% of patients. Breakpoints within SLX4IP were defined to recurrent positions and revealed junctions with typical characteristics of illegitimate V(D)J-mediated recombination. In initial and validation analyses, SLX4IP deletions were significantly associated with male gender and ETV6/RUNX1-rearranged ALL (both overall P < 0.0001). For mechanistic validation, a second recurrent deletion affecting TAL1 and caused by the same molecular mechanism was analyzed in 1149 T-cell ALL patients. Validating a differential role by sex of illegitimate V(D)J-mediated recombination at the TAL1 locus, 128 out of 1149 T-cell ALL samples bore a deletion and males were significantly more often affected (P = 0.002). The repeatedly detected association of SLX4IP deletion with male sex and the extension of the sex bias to deletion of the TAL1 locus suggest that differential illegitimate V(D)J-mediated recombination events at specific loci may contribute to the consistent observation of higher incidence rates of childhood ALL in boys compared with girls.


Asunto(s)
Proteínas Portadoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recombinasas/genética , Recombinación V(D)J , Adolescente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Niño , Preescolar , Estudios de Cohortes , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Eliminación de Gen , Humanos , Lactante , Masculino , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Proteína 1 de la Leucemia Linfocítica T Aguda , Proteína ETS de Variante de Translocación 6
20.
Br J Haematol ; 173(5): 742-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26913693

RESUMEN

Minimal residual disease (MRD) at the end of induction therapy is important for risk stratification of acute lymphoblastic leukaemia (ALL), but bone marrow (BM) aspiration is often postponed or must be repeated to fulfil qualitative and quantitative criteria for morphological assessment of haematological remission and/or MRD analysis. The impact of BM aspiration delay on measured MRD levels and resulting risk stratification is currently unknown. We analysed paired MRD data of 289 paediatric ALL patients requiring a repeat BM aspiration. MRD levels differed in 108 patients (37%) with a decrease in the majority (85/108). This would have resulted in different risk group allocation in 64 of 289 patients (23%) when applying the ALL-Berlin-Frankfurt-Münster 2000 criteria. MRD change was associated with the duration of delay; 40% of patients with delay ≥7 days had a shift to lower MRD levels compared to only 18% after a shorter delay. Patients MRD-positive at the original but MRD-negative at the repeat BM aspiration (n = 50) had a worse 5-year event-free survival than those already negative at first aspiration (n = 115) (86 ± 5% vs. 94 ± 2%; P = 0·024). We conclude that BM aspirations should be pursued as scheduled in the protocol because delayed MRD sampling at end of induction may result in false-low MRD load and distort MRD-based risk assessment.


Asunto(s)
Examen de la Médula Ósea/métodos , Errores Diagnósticos/prevención & control , Neoplasia Residual/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Adolescente , Biopsia con Aguja Fina , Niño , Preescolar , Diagnóstico Tardío , Femenino , Humanos , Lactante , Masculino , Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Inducción de Remisión , Medición de Riesgo , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA