Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Colección BVS Ecuador
Intervalo de año de publicación
1.
Br J Nutr ; 130(5): 783-792, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36412162

RESUMEN

Obese mothers' offspring develop obesity and metabolic alterations in adulthood. Poor postnatal dietary patterns also contribute to obesity and its comorbidities. We aimed to determine whether in obese mothers' offspring an adverse postnatal environment, such as high-fat diet (HFD) consumption (second hit) exacerbates body fat accumulation, metabolic alterations and adipocyte size distribution. Female Wistar rats ate chow (C-5 %-fat) or HFD (maternal obesity (MO)-25 %-fat) from weaning until the end of lactation. Male offspring were weaned on either control (C/C and MO/C, maternal diet/offspring diet) or HFD (C/HF and MO/HF) diet. At 110 postnatal days, offspring were killed. Fat depots were excised to estimate adiposity index (AI). Serum glucose, triglyceride, leptin, insulin, insulin resistance index (HOMA-IR), corticosterone and dehydroepiandrosterone (DHEA) were determined. Adipocyte size distribution was evaluated in retroperitoneal fat. Body weight was similar in C/C and MO/C but higher in C/HF and MO/HF. AI, leptin, insulin and HOMA-IR were higher in MO/C and C/HF v. C/C but lower than MO/HF. Glucose increased in MO/HF v. MO/C. C/HF and MO/C had higher triglyceride and corticosterone than C/C, but lower corticosterone than MO/HF. DHEA and the DHEA/corticosterone ratio were lower in C/HF and MO/C v. C/C, but higher than MO/HF. Small adipocyte proportion decreased while large adipocyte proportions increased in MO/C and C/HF v. C/C and exacerbated in MO/HF v. C/HF. Postnatal consumption of a HFD by the offspring of obese mothers exacerbates body fat accumulation as well as the decrease of small and the increase of large adipocytes, which leads to larger metabolic abnormalities.


Asunto(s)
Leptina , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratas , Femenino , Animales , Masculino , Embarazo , Dieta Alta en Grasa/efectos adversos , Madres , Corticosterona/metabolismo , Ratas Wistar , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/etiología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Peso Corporal , Glucosa/metabolismo , Triglicéridos/metabolismo , Hipertrofia/metabolismo , Insulina/metabolismo , Deshidroepiandrosterona/metabolismo
2.
Appetite ; 190: 107030, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678585

RESUMEN

Evidence about the association between breastfeeding and its duration with growth, appetite and satiety indicators, and adiposity in low and middle-income countries facing nutritional transition is scarce. The aim of this study was to evaluate the association between longitudinal patterns of breastfeeding (exclusive [EBF] and continued [CBF]) with adiposity and growth, and the mediating role of appetite and satiety indicators in these associations in Mexican children during the first 2 years of life. Information from 378 mother-child pairs from the MAS-Lactancia birth cohort was analysed. Information was collected at birth and at months 1, 3, 6, 9, 12, 18 and 24 of life. Duration of EBF and CBF was computed. Linear mixed models were used to assess the association of EBF and CBF with growth and adiposity. Path analysis was used for mediation analysis. Compared with the reference group (EBF duration <1 month), males with >3 to ≤6 months of EBF had less abdominal circumference (ß = -0.66, p = 0.05), Z-score weight-for-length (ß = -0.17, p = 0.19) and length-for-age (ß = -0.49, p < 0.01). Participants without CBF beyond 6 months had higher BMI Z-score (ß = 0.19, p < 0.01), abdominal circumference (ß = 0.62, p < 0.01) and skinfold sum (ß = 0.80, p = 0.09), and o difference in length-for-age. For EBF, mediation was confirmed for satiety responsiveness on the association with BMI Z-Score, for food fussiness for the association with abdominal circumference and length-for-age Z-score, and enjoyment of food on the association with length-for-age Z-score. For CBF, mediation was confirmed for food fussiness in the association with length-for-age. This study suggests that a longer exposure to EBF and CBF is associated with lower adiposity in children under 2 years of age, and that this association could be partially mediated by appetite and satiety indicators.

3.
Dev Neurosci ; 44(6): 603-614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36162387

RESUMEN

Maternal stress during pregnancy results in increased risk of developing psychiatric disorders in the offspring including anxiety, depression, schizophrenia, and autism. However, the mechanisms underlying this disease susceptibility remain largely to be determined. In this study, the involvement of the serotonin (5-HT) and kynurenine (KYN) pathways of tryptophan metabolism on the behavioral deficits induced by maternal stress during the late phase of gestation in mice was investigated. Adult offspring born to control or restraint-stressed dams were exposed to the elevated plus-maze and tail suspension tests. Metabolites of the KYN and 5-HT pathways were measured in the hippocampus and brainstem by ultra-performance liquid chromatography tandem mass spectrometry. Female, but not male, prenatally stressed (PNS) offspring displayed a depressive-like phenotype, mainly when in proestrus/diestrus, along with reduced hippocampal 5-HT levels and high 5-HT turnover rate in the hippocampus and brainstem. In contrast, male PNS mice showed enhanced anxiety-like behaviors and higher hippocampal and brainstem quinolinic acid levels compared to male offspring born to nonstressed dams. These results indicate that maternal stress affects the behavior and brain metabolism of tryptophan in the offspring in a sex-dependent manner and suggest that alterations in both the 5-HT and KYN pathways may underlie the emotional dysfunctions observed in individuals exposed to stress during in utero development.


Asunto(s)
Quinurenina , Triptófano , Embarazo , Ratones , Animales , Femenino , Quinurenina/metabolismo , Triptófano/metabolismo , Serotonina/metabolismo , Ansiedad/metabolismo , Conducta Animal
4.
Nutr Neurosci ; 25(10): 2011-2022, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33926365

RESUMEN

AIM: Individuals undernourished in utero or during early life are at high risk of developing obesity and metabolic disorders and show an increased preference for consuming sugary and fatty food. This study aimed at determining whether impaired taste detection and signalling in the lingual epithelium and the brain might contribute to this altered pattern of food intake. METHODS: The preference for feeding fat and sweet food and the expression in circumvallate papillae and hypothalamus of genes coding for sweet and fat receptors and transducing pathways were evaluated in adult rats born to control or calorie-restricted dams. Expression in the hypothalamus and the brain's reward system of genes involved in the homeostatic and hedonic control of food intake was also determined. RESULTS: Male and female undernourished animals exhibited increased expression in taste papillae and hypothalamus of T1R1, T1R2, CD36, gustducin, TRMP5 and PLC-ß2 genes, all of which modulate sweet and fat detection and intracellular signalling. However, the severity of the effect was greater in females than in males. Moreover, male, but not female, undernourished rats consumed more standard and sweetened food than their control counterparts and presented increased hypothalamic AgRP and NPY mRNAs levels together with enhanced dopamine transporter and dopamine receptor D2 expression in the ventral tegmental area. CONCLUSIONS: Maternal undernutrition induces sex-specific changes in food preferences and gene expression in taste papillae, hypothalamus and brain reward regions. The gene expression alterations in the male offspring are in line with their preference for consuming sugary and fatty food.


Asunto(s)
Desnutrición , Gusto , Proteína Relacionada con Agouti/metabolismo , Animales , Antígenos CD36/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Hipotálamo/metabolismo , Masculino , Desnutrición/metabolismo , Ratas , Receptores Dopaminérgicos/metabolismo
5.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499183

RESUMEN

The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Animales , Masculino , Ratas , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Proteómica , Transcriptoma
6.
J Physiol ; 599(18): 4309-4320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34387378

RESUMEN

At the molecular level, cellular ageing involves changes in multiple gene pathways. Cellular senescence is both an important initiator and a consequence of natural ageing. Senescence results in changes in multiple cellular mechanisms that result in a natural decrease in cell cycle activity. Liver senescence changes impair hepatic function. Given the well-established sexual dimorphism in ageing, we hypothesized that the natural hepatic ageing process is driven by sex-dependent gene mechanisms. We studied our well-characterized normal, chow-fed rat ageing model, lifespan ∼850 days, in which we have reported ageing of metabolism, reproduction and endocrine function. We performed liver RNA-seq on males and females at 110 and 650 days to determine changes in the cell cycle and cellular senescence signalling pathways. We found that natural liver ageing shows sexual dimorphism in these pathways. RNA-seq revealed more male (3967) than female (283) differentially expressed genes between 110 and 650 days. Cell cycle pathway signalling changes in males showed decreased protein and expression of key genes (Cdk2, Cdk4, Cycd and PCNA) and increased expression ofp57 at 650 vs 110 days. In females, protein and gene expression of cell growth regulators, e.g. p15 and p21, which inhibit cell cycle G1 progression, were increased. The cell senescence pathway also showed sexual dimorphism. Igfbp3, mTOR and p62 gene and protein expression decreased in males while those ofTgfb3 increased in females. Understanding the involvement of cell cycling and cellular senescence pathways in natural ageing will advance evaluation of mechanisms associated with altered ageing and frailty trajectories. KEY POINTS: In rats RNA-seq analysis showed sexual dimorphism in gene expression across the life-course between 110 and 650 days of life. Fourteen times more liver transcriptome and six times more pathway changes were observed in males compared with females. Significant changes were observed in several signalling pathways during ageing. Bioinformatic analysis were focused on changes in genes and protein products related to cell cycle and cellular senescence pathways. Males showed decreased protein product and expression of the key genes Cdk2 and Cdk4 responsible for cell cycle progression while females increased protein product and expression of p21 and p15, key genes responsible for cell cycle arrest. In conclusion, normative rat hepatic ageing involves changes in cellular pathways that control cell cycle arrest but through changes in different genes in males and females. These findings identify mechanisms that underlie the well-established sexual dimorphism in ageing.


Asunto(s)
Caracteres Sexuales , Transducción de Señal , Animales , Ciclo Celular , Senescencia Celular , Femenino , Hígado , Masculino , Ratas , Transcriptoma
7.
Eur J Clin Invest ; 51(10): e13631, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34061987

RESUMEN

Compelling evidence exists indicating that developmental programming influences ageing. Programming alters life-course phenotype in multiple organs, predisposing to diseases such as diabetes, obesity and cardiovascular disease that shorten lifespan. This review describes studies in rodents, the most commonly studied species, addressing interactions of programming challenges with ageing. We first consider ageing and programming of insulin function that has been clearly shown to decrease with age. It is important to evaluate ageing in pancreatic islets isolated from other systems. Studies discussed show premature pancreatic islet ageing resulting from both maternal under- and overnutrition. New ways to determine programming of adipose tissue and effects on fat storage are explored. Oxidative stress is a major factor that regulates ageing in tissues. Oxidative stress is discussed in relation to reproductive and cardiovascular ageing. Premature ageing is associated with both low and high glucocorticoid function. Both over and undernutrition have offspring sex-specific programming effects on life-course glucocorticoid concentrations. Evidence is provided that maternal age at conception affects offspring endocrine and metabolism ageing. Finally, the importance of matching foetal nutrition and energy availability with composition and energy content in the post-weaning diet is demonstrated. This mismatch can lead to a greatly shortened lifespan. General principles are discussed throughout. For example, sexual dimorphism of age-related outcomes can be marked. Accelerated ageing occurs early in life. Improving knowledge on programming ageing interactions will improve health span as well as lifespan. Finally, there are considerable similarities in outcomes programmed by maternal undernutrition and overnutrition.


Asunto(s)
Envejecimiento/fisiología , Animales Recién Nacidos/fisiología , Enfermedad/etiología , Desarrollo Fetal/fisiología , Crecimiento/fisiología , Animales , Femenino , Ratones , Embarazo , Ratas
8.
Eur J Clin Invest ; 51(10): e13637, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34107063

RESUMEN

Developmental programming predisposes offspring to metabolic, behavioural and reproductive dysfunction in adult life. Evidence is accumulating that ageing phenotype and longevity are in part developmentally programmed in each individual. Unfortunately, there are few studies addressing the effects of developmental programming by maternal nutrition on the rate of ageing of the male reproductive system. This review will discuss effects of foetal exposure to maternal environmental challenges on male offspring fertility and normal ageing of the male reproductive system. We focus on several key factors involved in reproductive ageing such as decreased hormone production, DNA fragmentation, oxidative stress, telomere shortening, epigenetics, maternal lifestyle and nutrition. There is compelling evidence that ageing of the male reproductive system is developmentally programmed. Both maternal over- or undernutrition accelerate ageing of male offspring reproductive function through similar mechanisms such as decreased serum testosterone levels, increase in oxidative stress biomarkers in both the testes and sperm and changes in sperm quality. Importantly, even in adult life, exercise in male offspring of obese mothers improves adverse effects of programming on reproductive function. Maternal consumption of a low-protein diet causes transgenerational effects in progeny via the paternal line. The seminal fluid has effects on the intrauterine environment. Programming by male factors may involve more than just the sperm. Improving knowledge on developmental programming ageing interactions will improve not only male health and life span but also the health of future generations by reducing programming via the paternal line.


Asunto(s)
Envejecimiento/fisiología , Genitales Masculinos/crecimiento & desarrollo , Reproducción/fisiología , Animales , Humanos , Masculino
9.
Int J Obes (Lond) ; 44(12): 2430-2435, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32546858

RESUMEN

There are several different methods available for the determination of body fat composition. Two current methods requiring special instrumentation are magnetic resonance imaging (MRI) and dual energy x-ray absorptiometry (DXA). The use of these techniques is very limited despite desirable properties, due to their high costs. Dissection of all fat depots (DF) requires no special instrumentation and allows examination and evaluation of each fat depot in more detail. MRI, DXA, and DF each have their unique advantages and disadvantages when they are applied to animal models. Most studies have determined body fat in young animals, and few studies have been performed in aging models. The aim of this study was to compare MRI, DXA, and DF data in offspring (F1) of mothers fed with control and high-fat diet. We studied rats that varied by age, sex, and maternal diet. The relationships between the three methods were determined via linear regression methods (using log-transformed values to accommodate relativity in the relationships), incorporating when useful age, sex, or diet of the animal. We conclude that the three methods are comparable for measuring body fat, but that direct equivalence gets masked by age, sex, and sometimes dietary group. Depending on the equipment available, the budget of the laboratory, and the nature of the research questions, different approaches may often suggest themselves as the best one.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Composición Corporal , Absorciometría de Fotón , Animales , Dieta Alta en Grasa , Disección , Femenino , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Wistar
10.
An Acad Bras Cienc ; 92(4): e20191572, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33331442

RESUMEN

This study aimed at evaluating the levels of different maternal exercise intensities on maternal and fetal outcomes. Wistar rats were mated and the pregnant rats were distributed into four experimental groups (n = 13 animals/group): Control (Not exercise group - 0% of the anaerobic threshold- AT), mild (20%), moderate (80%), and heavy-exercise intensity (140% of AT). These AT were matched to the load of 0, 1, 4 and 7% of the body weight of the animal related to swimming-induced physical intensity. In pregnancy, biomarkers related to maternal blood gases, oxidative stress, metabolism, and reproductive performance, and outcomes of their offspring were analyzed. The mild and moderate-swimming caused no change on implantation, live fetus numbers and oxidative stress status. However, the rats submitted to mild-exercise presented respiratory alkalosis and the heavy-exercise group showed respiratory acidosis. In addition, fetuses of the heavy-exercise dams were smaller for gestational age and lower serum adiponectin levels compared to those of other groups. In conclusion, the moderate-exercise intensity caused beneficial effects for maternal environment and the mild and moderate-exercise presented similar fetal repercussions. Nevertheless, the heavy-exercise intensity caused maternal metabolic alterations that damaged the fetal growth. Therefore, these findings confirm that physical intensity should be carefully conducted to avoid maternal complications and, consequently, compromised fetal repercussions.


Asunto(s)
Glucemia , Reproducción , Animales , Femenino , Feto , Embarazo , Ratas , Ratas Wistar , Natación
11.
Rev Invest Clin ; 73(4): 199-209, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33090120

RESUMEN

In the last century, progress in the knowledge of human diseases, their diagnosis and treatment have grown exponentially, due in large part to the introduction and use of laboratory animals. Along with this important progress, the need to provide training and guidance to the scientific community in all aspects related to the proper use of experimental animals has been indispensable. Animal research committees play a primary role in evaluating experimental research protocols, from their feasibility to the rational use of animals, but above all in seeking animal welfare. The Institutional Committee for the Care and Use of Animals (IACUC) has endeavored to share several relevant aspects in conducting research with laboratory animals. Here, we present and discuss the topics that we consider of utmost importance to take in the account during the design of any experimental research protocol, so we invite researchers, technicians, and undergraduate and graduate students to dive into the fascinating subject of proper animal care and use for experimentation. The main intention of these contributions is to sensitize users of laboratory animals for the proper and rational use of them in experimental research, as well as to disseminate the permitted and unpermitted procedures in laboratory animals. In the first part, the significance of experimental research, the main functions of IACUC, and the principle of the three R's (replacement, reduction, and refinement) are addressed.


Asunto(s)
Comités de Atención Animal , Experimentación Animal , Bienestar del Animal , Experimentación Animal/ética , Animales , Animales de Laboratorio , Proyectos de Investigación
12.
Rev Invest Clin ; 73(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33048918

RESUMEN

In the last century, progress in the knowledge of human diseases, their diagnosis and treatment have grown exponentially, due in large part to the introduction and use of laboratory animals. Along with this important progress, the need to provide training and guidance to the scientific community in all aspects related to the proper use of experimental animals has been indispensable. Animal research committees play a primary role in evaluating experimental research protocols, from their feasibility to the rational use of animals, but above all in seeking animal welfare. The Institutional Committee for the Care and Use of Animals (IACUC) has endeavored to share several relevant aspects in conducting research with laboratory animals. Here, we present and discuss the topics that we consider of utmost importance to take in the account during the design of any experimental research protocol, so we invite researchers, technicians, and undergraduate and graduate students to dive into the fascinating subject of proper animal care and use for experimentation. The main intention of these contributions is to sensitize users of laboratory animals for the proper and rational use of them in experimental research, as well as to disseminate the permitted and unpermitted procedures in laboratory animals. In the first part, the significance of experimental research, the main functions of IACUC, and the principle of the three R's (replacement, reduction, and refinement) are addressed.

13.
J Physiol ; 597(23): 5549-5563, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591717

RESUMEN

KEY POINTS: Maternal obesity predisposes to metabolic dysfunction in male and female offspring Maternal high-fat diet consumption prior to and throughout pregnancy and lactation accelerates offspring metabolic ageing in a sex-dependent manner This study provides evidence for programming-ageing interactions ABSTRACT: Human epidemiological studies show that maternal obesity (MO) shortens offspring life and health span. Life course cellular mechanisms involved in this developmental programming-ageing interaction are poorly understood. In a well-established rat MO model, female Wistar rats ate chow (controls (C)) or high energy, obesogenic diet to induce MO from weaning through pregnancy and lactation. Females were bred at postnatal day (PND) 120. Offspring (F1 ) of mothers on control diet (CF1 ) and MO diet (MOF1 ) delivered spontaneously at terms. Both CF1 and MOF1 ate C diet from weaning throughout the study. Offspring were killed at PND 36, 110, 450 and 650. We determined body and liver weights, liver and serum metabolite concentrations, hormones and oxidative stress biomarkers. Male and female CF1 body weight, total fat, adiposity index, serum leptin, insulin, insulin resistance, and liver weight, fat, triglycerides, malondialdehyde, reactive oxygen species and nitrotyrosine all rose with differing ageing trajectories. Female CF1 triglycerides were unchanged with age. Age-related increases were greater in MOF1 than CF1 in both sexes for all variables except glucose in males and females and cholesterol in males. Cholesterol fell in CF1 females but not MOF1 . Serum corticosterone levels were higher in male and female MOF1 than CF1 and declined with age. DHEA serum levels were lower in male and female MOF1 than CF1 . Liver antioxidant enzymes decreased with age (CF1 and MOF1 ). CONCLUSIONS: exposure to the developmental challenge of MO accelerates progeny ageing metabolic and endocrine profiles in a sex specific manner, providing evidence for programming-ageing interactions.


Asunto(s)
Enfermedades Metabólicas/etiología , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Adiposidad , Envejecimiento/fisiología , Animales , Metabolismo de los Hidratos de Carbono , Dieta Alta en Grasa , Femenino , Lactancia , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Tamaño de los Órganos , Estrés Oxidativo , Embarazo , Ratas Wistar , Caracteres Sexuales
14.
Am J Physiol Renal Physiol ; 317(6): F1637-F1648, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31608674

RESUMEN

Protein restriction (PR) during pregnancy induces morphofunctional alterations related to deficient nephrogenesis. We studied the renal functional and morphological significance of PR during pregnancy and/or lactation in adult male rat offspring and the repercussions on acute kidney injury (AKI) severity. Female rats were randomly assigned to the following groups: control diet during pregnancy and lactation (CC), control diet during pregnancy and PR diet during lactation (CR), PR during pregnancy and control diet during lactation (RC), and PR during pregnancy and lactation (RR). Three months after birth, at least 12 male offspring of each group randomly underwent either bilateral renal ischemia for 45 min [ischemia-reperfusion (IR)] or sham surgery. Thus, eight groups were studied 24 h after reperfusion: CC, CC + IR, CR, CR + IR, RC, RC + IR, RR, and RR + IR. Under basal conditions, the CR, RC, and RR groups exhibited a significant reduction in nephron number that was associated with a reduction in renal blood flow. Glomerular hyperfiltration was present as a compensatory mechanism to maintain normal renal function. mRNA levels of several vasoactive, antioxidant, and anti-inflammatory molecules were decreased. After IR, renal function was similarly reduced in all of the studied groups. Although all of the offspring from maternal PR exhibited renal injury, the magnitude was lower in the RC and RR groups, which were associated with faster renal blood flow recovery, differential vasoactive factors, and hypoxia-inducible factor-1α signaling. Our results show that the offspring from maternal PR are resilient to AKI induced by IR that was associated with reduced tubular injury and a differential hemodynamic response.


Asunto(s)
Lesión Renal Aguda/prevención & control , Dieta con Restricción de Proteínas , Lesión Renal Aguda/patología , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Citocinas/metabolismo , Dieta , Femenino , Tasa de Filtración Glomerular , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pruebas de Función Renal , Túbulos Renales/patología , Lactancia , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Wistar , Circulación Renal , Daño por Reperfusión/prevención & control
15.
Rev Invest Clin ; 71(3): 149-156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31184330

RESUMEN

It is often unclear to the clinical investigator whether observational studies should be submitted to a research ethics committee (REC), mostly because, in general, no active or additional interventions are performed. Moreover, obtaining an informed consent under these circumstances may be challenging, either because these are very large epidemiological registries, or the subject may no longer be alive, is too ill to consent, or is impossible to contact after being discharged. Although observational studies do not involve interventions, they entail ethical concerns, including threats such as breaches in confidentiality and autonomy, and respect for basic rights of the research subjects according to the good clinical practices. In this context, in addition to their main function as evaluators from an ethical, methodological, and regulatory point of view, the RECs serve as mediators between the research subjects, looking after their basic rights, and the investigator or institution, safeguarding them from both legal and unethical perils that the investigation could engage, by ensuring that all procedures are performed following the international standards of care for research. The aim of this manuscript is to provide information on each type of study and its risks, along with actions to prevent such risks, and the function of RECs in each type of study.


Asunto(s)
Comités de Ética en Investigación/organización & administración , Estudios Observacionales como Asunto/ética , Proyectos de Investigación , Humanos , Consentimiento Informado/ética , Entrevistas como Asunto/métodos , Sistema de Registros/ética , Investigadores/organización & administración , Estudios Retrospectivos
16.
J Physiol ; 596(19): 4611-4628, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29972240

RESUMEN

KEY POINTS: Maternal high-fat diet consumption predisposes to metabolic dysfunction in male and female offspring at young adulthood. Maternal obesity programs non-alcoholic fatty liver disease (NAFLD) in a sex-dependent manner. We demonstrate sex-dependent liver transcriptome profiles in rat offspring of obese mothers. In this study, we focused on pathways related to insulin, glucose and lipid signalling. These results improve understanding of the mechanisms by which a maternal high-fat diet affects the offspring. ABSTRACT: Maternal obesity (MO) predisposes offspring (F1) to obesity, insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). MO's effects on the F1 liver transcriptome are poorly understood. We used RNA-seq to determine the liver transcriptome of male and female F1 of MO and control-fed mothers. We hypothesized that MO-F1 are predisposed to sex-dependent adult liver dysfunction. Female Wistar rat mothers ate a control (C) or obesogenic (MO) diet from the time they were weaned through breeding at postnatal day (PND) 120, delivery and lactation. After weaning, all male and female F1 ate a control diet. At PND 110, F1 serum, liver and fat were collected to analyse metabolites, histology and liver differentially expressed genes. Male and female MO-F1 showed increased adiposity index, triglycerides, insulin and homeostatic model assessment vs. C-F1 with similar body weight and glucose serum concentrations. MO-F1 males presented greater physiological and histological NAFLD characteristics than MO-F1 females. RNA-seq revealed 1365 genes significantly changed in male MO-F1 liver and only 70 genes in female MO-F1 compared with controls. GO and KEGG analysis identified differentially expressed genes related to metabolic processes. Male MO-F1 liver showed the following altered pathways: insulin signalling (22 genes), phospholipase D signalling (14 genes), NAFLD (13 genes) and glycolysis/gluconeogenesis (7 genes). In contrast, few genes were altered in these pathways in MO-F1 females. In summary, MO programs sex-dependent F1 changes in insulin, glucose and lipid signalling pathways, leading to liver dysfunction and insulin resistance.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Lípidos/análisis , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/fisiopatología , Efectos Tardíos de la Exposición Prenatal/genética , Transcriptoma , Animales , Animales Recién Nacidos , Biomarcadores/análisis , Dieta Alta en Grasa/efectos adversos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Incidencia , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Wistar , Factores Sexuales
17.
Int J Mol Sci ; 19(4)2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617296

RESUMEN

Obesity is associated with inflammatory changes and accumulation and phenotype polarization of adipose tissue macrophages (ATMs). Obese pregnant women have alterations in adipose tissue composition, but a detailed description of macrophage population is not available. In this study, we characterized macrophage populations in visceral adipose tissue (VAT) from pregnant women with normal, overweight, and obese pregestational weight. Immunophenotyping of macrophages from VAT biopsies was performed by flow cytometry using CD45 and CD14 as markers of hematopoietic and monocyte linage, respectively, while HLA-DR, CD11c, CD163, and CD206 were used as pro- and anti-inflammatory markers. Adipocyte number and size were evaluated by light microscopy. The results show that pregnant women that were overweight and obese during the pregestational period had adipocyte hypertrophy. Two different macrophage populations in VAT were identified: recruited macrophages (CD45⁺CD14⁺), and a novel population lacking CD45, which was considered to be a resident macrophages subset (CD45−CD14⁺). The number of resident HLA−DRlow/− macrophages showed a negative correlation with body mass index (BMI). Both resident and recruited macrophages from obese women expressed higher CD206 levels. CD11c expression was higher in resident HLA-DR⁺ macrophages from obese women. A strong correlation between CD206 and CD11c markers and BMI was observed. Our findings show that being overweight and obese in the pregestational period is associated with adipocyte hypertrophy and specific ATMs populations in VAT.


Asunto(s)
Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Macrófagos/metabolismo , Macrófagos/patología , Adipocitos/citología , Adipocitos/metabolismo , Adulto , Biomarcadores/metabolismo , Índice de Masa Corporal , Quimiotaxis de Leucocito/inmunología , Estudios Transversales , Femenino , Humanos , Hipertrofia , Inmunofenotipificación , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Activación de Macrófagos/inmunología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Embarazo , Adulto Joven
18.
Reprod Fertil Dev ; 29(10): 1950-1957, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28063465

RESUMEN

A high-fat diet during intrauterine development predisposes offspring (F1) to phenotypic alterations, such as lipid synthesis imbalance and increased oxidative stress, causing changes in male fertility. The objective of this study was to evaluate the effects of maternal obesity during pregnancy and lactation on antioxidant enzymes in the F1 testes. Female Wistar rats (F0) were fed either a control (C, 5% fat) or an obesogenic (MO, maternal obesity, 25% fat) diet from weaning and throughout subsequent pregnancy and lactation. F1 offspring were weaned to the control diet. Testes were retrieved at 110, 450 and 650 postnatal days (PND) for real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) antioxidant enzyme analyses. Catalase was similar between groups by RT-qPCR, whereas by IHC it was higher in the MO group at all ages than in the C group. Superoxide dismutase 1 (SOD1) had lower expression at PND 110 in MO than in C by both techniques; at PND 450 and 650 by immunoanalysis SOD1 was higher in MO than in C. Glutathione peroxidase 1 (GPX1), GPX2 and GPX4 by RT-qPCR were similar between groups and ages; by IHC GPX1/2 was higher in MO than in C, whereas GPX4 showed the opposite result at PND 110 and 450. In conclusion, antioxidant enzymes in the rat testes are modified with age. Maternal obesity negatively affects the F1 testicular antioxidant defence system, which, in turn, can explain the decrease in reproductive capacity.


Asunto(s)
Antioxidantes/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Obesidad/metabolismo , Estrés Oxidativo/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Testículo/metabolismo , Envejecimiento/metabolismo , Animales , Catalasa/metabolismo , Dieta Alta en Grasa , Femenino , Glutatión Peroxidasa/metabolismo , Masculino , Embarazo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa GPX1
19.
An Acad Bras Cienc ; 89(1): 223-230, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28423082

RESUMEN

The aim of this study was to compare two models of swimming applied to pregnant rats born small for pregnancy age (SPA). Diabetes was chemically induced in adult female rats to develop an inadequate intrauterine environment, leading to birth of a SPA offspring. In adulthood, the female SPA rats were mated and submitted to different swimming programs. The exercise program 1 (Ex1) consisted of swimming for 15 minutes, followed by 15 minutes of rest and another 15 minutes of swimming, 3 days a week before and during pregnancy. Another program (Ex2) was applied during 60 minutes uninterrupted a day, 6 days/week during pregnancy. The pregnant rats presented no interference on body weight and glycemia. The rats submitted to Ex2 model showed decreased insulin and blood glucose levels by oral glucose tolerance test, and reduction in area under curve values. The offspring from dams submitted to both exercise protocols presented an increased rate of newborns SPA. However, the offspring from Ex2 dams showed percentage twice higher of newborns SPA than Ex1 offspring. Our data suggests that continuous exercise of 60 min/day ameliorated the enhanced peripheral insulin sensitivity in growth-restricted females. However, this protocol employed at pregnancy leads to intrauterine growth restriction.


Asunto(s)
Desarrollo Fetal/fisiología , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Natación/fisiología , Animales , Animales Recién Nacidos/fisiología , Glucemia/análisis , Glucemia/metabolismo , Peso Corporal/fisiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Prueba de Tolerancia a la Glucosa , Masculino , Modelos Animales , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Distribución Aleatoria , Ratas Wistar , Valores de Referencia , Factores de Tiempo
20.
Endocr Res ; 42(3): 252-259, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28318332

RESUMEN

PURPOSE: The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). MATERIALS AND METHODS: Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. RESULTS: The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R2=0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R2=0.372, P=0.008). BMI-SDS was mildly associated with leptin (R2=0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R2=0.136, P=0.007). CONCLUSIONS: Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.


Asunto(s)
Adipoquinas/sangre , Endotelio Vascular/fisiopatología , Resistencia a la Insulina/fisiología , Síndrome Metabólico/sangre , Obesidad Infantil/sangre , Adolescente , Niño , Comorbilidad , Femenino , Humanos , Masculino , Síndrome Metabólico/epidemiología , Síndrome Metabólico/fisiopatología , México/epidemiología , Obesidad Infantil/epidemiología , Obesidad Infantil/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA