Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835317

RESUMEN

Celiac disease (CD) is a chronic and systemic autoimmune disorder that affects preferentially the small intestine of individuals with a genetic predisposition. CD is promoted by the ingestion of gluten, a storage protein contained in the endosperm of the seeds of wheat, barley, rye, and related cereals. Once in the gastrointestinal (GI) tract, gluten is enzymatically digested with the consequent release of immunomodulatory and cytotoxic peptides, i.e., 33mer and p31-43. In the late 1970s a new group of biologically active peptides, called gluten exorphins (GEs), was discovered and characterized. In particular, these short peptides showed a morphine-like activity and high affinity for the δ-opioid receptor (DOR). The relevance of GEs in the pathogenesis of CD is still unknown. Recently, it has been proposed that GEs could contribute to asymptomatic CD, which is characterized by the absence of symptoms that are typical of this disorder. In the present work, GEs cellular and molecular effects were in vitro investigated in SUP-T1 and Caco-2 cells, also comparing viability effects with human normal primary lymphocytes. As a result, GEs treatments increased tumor cell proliferation by cell cycle and Cyclins activation as well as by induction of mitogenic and pro-survival pathways. Finally, a computational model of GEs interaction with DOR is provided. Altogether, the results might suggest a possible role of GEs in CD pathogenesis and on its associated cancer comorbidities.


Asunto(s)
Enfermedad Celíaca , Glútenes , Humanos , Glútenes/química , Células CACO-2 , Péptidos/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Proliferación Celular
2.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373057

RESUMEN

Dimethyl fumarate (DMF) is a well-characterized molecule that exhibits immuno-modulatory, anti-inflammatory, and antioxidant properties and that is currently approved for the treatment of psoriasis and multiple sclerosis. Due to its Nrf2-dependent and independent mechanisms of action, DMF has a therapeutic potential much broader than expected. In this comprehensive review, we discuss the state-of-the-art and future perspectives regarding the potential repurposing of DMF in the context of chronic inflammatory diseases of the intestine, such as inflammatory bowel disorders (i.e., Crohn's disease and ulcerative colitis) and celiac disease. DMF's mechanisms of action, as well as an exhaustive analysis of the in vitro/in vivo evidence of its beneficial effects on the intestine and the gut microbiota, together with observational studies on multiple sclerosis patients, are here reported. Based on the collected evidence, we highlight the new potential applications of this molecule in the context of inflammatory and immune-mediated intestinal diseases.


Asunto(s)
Colitis Ulcerosa , Esclerosis Múltiple , Humanos , Dimetilfumarato/farmacología , Dimetilfumarato/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Colitis Ulcerosa/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Intestinos
3.
Front Immunol ; 15: 1408744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957473

RESUMEN

Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.


Asunto(s)
Sistema Nervioso Entérico , Neuroglía , Humanos , Neuroglía/fisiología , Sistema Nervioso Entérico/patología , Animales , Enfermedades Gastrointestinales/patología
4.
Front Cell Neurosci ; 17: 1170309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153631

RESUMEN

Enteric glial cells (EGCs), the major components of the enteric nervous system (ENS), are implicated in the maintenance of gut homeostasis, thereby leading to severe pathological conditions when impaired. However, due to technical difficulties associated with EGCs isolation and cell culture maintenance that results in a lack of valuable in vitro models, their roles in physiological and pathological contexts have been poorly investigated so far. To this aim, we developed for the first time, a human immortalized EGC line (referred as ClK clone) through a validated lentiviral transgene protocol. As a result, ClK phenotypic glial features were confirmed by morphological and molecular evaluations, also providing the consensus karyotype and finely mapping the chromosomal rearrangements as well as HLA-related genotypes. Lastly, we investigated the ATP- and acetylcholine, serotonin and glutamate neurotransmitters mediated intracellular Ca2+ signaling activation and the response of EGCs markers (GFAP, SOX10, S100ß, PLP1, and CCL2) upon inflammatory stimuli, further confirming the glial nature of the analyzed cells. Overall, this contribution provided a novel potential in vitro tool to finely characterize the EGCs behavior under physiological and pathological conditions in humans.

5.
Cells ; 11(16)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010578

RESUMEN

Photodynamic therapy (PDT) is a promising anticancer strategy based on the light energy stimulation of photosensitizers (PS) molecules within a malignant cell. Among a multitude of recently challenged PS, Rose bengal (RB) has been already reported as an inducer of cytotoxicity in different tumor cells. However, RB displays a low penetration capability across cell membranes. We have therefore developed a short-term amino acids starvation protocol that significantly increases RB uptake in human astrocytoma cells compared to normal rat astrocytes. Following induced starvation uptake, RB is released outside cells by the exocytosis of extracellular vesicles (EVs). Thus, we have introduced a specific pharmacological treatment, based on the GW4869 exosomes inhibitor, to interfere with RB extracellular release. These combined treatments allow significantly reduced nanomolar amounts of administered RB and a decrease in the time interval required for PDT stimulation. The overall conditions affected astrocytoma viability through the activation of apoptotic pathways. In conclusion, we have developed for the first time a combined scheme to simultaneously increase the RB uptake in human astrocytoma cells, reduce the extracellular release of the drug by EVs, and improve the effectiveness of PDT-based treatments. Importantly, this strategy might be a valuable approach to efficiently deliver other PS or chemotherapeutic drugs in tumor cells.


Asunto(s)
Astrocitoma , Exosomas , Fotoquimioterapia , Aminoácidos , Animales , Astrocitoma/tratamiento farmacológico , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Ratas , Rosa Bengala/química , Rosa Bengala/farmacología
6.
J Pers Med ; 11(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34683083

RESUMEN

Photodynamic therapy (PDT) has recently attracted interest as an innovative and adjuvant treatment for different cancers including malignant gliomas. Among these, Glioblastoma (GBM) is the most prevalent neoplasm in the central nervous system. Despite conventional therapeutic approaches that include surgical removal, radiation, and chemotherapy, GBM is characterized by an extremely poor prognosis and a high rate of recurrence. PDT is a physical process that induces tumor cell death through the genesis and accumulation of reactive oxygen species (ROS) produced by light energy interaction with a photosensitizing agent. In this contribution, we explored the potentiality of the plant alkaloid berberine (BBR) as a photosensitizing and cytotoxic agent coupled with a PDT scheme using a blue light source in human established astrocytoma cell lines. Our data mainly indicated for the combined BBR-PDT scheme a potent activation of the apoptosis pathway, through a massive ROS production, a great extent of mitochondria depolarization, and the sub-sequent activation of caspases. Altogether, these results demonstrated that BBR is an efficient photosensitizer agent and that its association with PDT may be a potential anticancer strategy for high malignant gliomas.

7.
Cells ; 9(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640653

RESUMEN

Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.


Asunto(s)
Membranas Artificiales , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/química , Nanomedicina/métodos
8.
Cells ; 8(4)2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013754

RESUMEN

Celiac disease (CD) is a chronic systemic autoimmune disorder that is triggered by the ingestion of gliadin peptides, the alcohol-soluble fraction of wheat gluten. These peptides, which play a key role in the immune response that underlies CD, spontaneously form aggregates and exert a direct toxic action on cells due to the increase in the reactive oxygen species (ROS) levels. Furthermore, peptic-tryptic digested gliadin peptides (PT-gliadin) lead to an impairment in the autophagy pathway in an in vitro model based on Caco-2 cells. Considering these premises, in this study we have analyzed different mTOR-independent inducers, reporting that the disaccharide trehalose, a mTOR-independent autophagy activator, rescued the autophagy flux in Caco-2 cells treated with digested gliadin, as well as improved cell viability. Moreover, trehalose administration to Caco-2 cells in presence of digested gliadin reduced the intracellular levels of these toxic peptides. Altogether, these results showed the beneficial effects of trehalose in a CD in vitro model as well as underlining autophagy as a molecular pathway whose modulation might be promising in counteracting PT-gliadin cytotoxicity.


Asunto(s)
Enfermedad Celíaca/metabolismo , Trehalosa/farmacología , Autofagia/efectos de los fármacos , Células CACO-2 , Enfermedad Celíaca/inmunología , Supervivencia Celular/efectos de los fármacos , Gliadina/efectos adversos , Gliadina/química , Gliadina/toxicidad , Glútenes , Células HT29 , Humanos , Modelos Biológicos , Péptidos , Especies Reactivas de Oxígeno , Trehalosa/metabolismo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA