Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 139(9): 1340-1358, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34788382

RESUMEN

Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Ratones Noqueados , Proteína Fosfatasa 2/genética , Proteínas Proto-Oncogénicas c-myc/genética
2.
Cytotherapy ; 22(7): 369-376, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32303428

RESUMEN

BACKGROUND: Qualitative and quantitative defects in natural killer (NK) cells have been noted in patients with acute myeloid leukemia (AML), providing rationale for infusion of donor-derived NK cells. We previously showed that decitabine enhances expression of NKG2D ligands in AML with additive cytotoxicity when NK cells and Fc (fragment crystallizable region)-engineered CD33 monoclonal antibody (CD33mAb) was used. We conducted a phase 1 study evaluating decitabine and haploidentical NK cells in relapsed AML. Using patient samples from this study, we evaluated whether ex vivo donor-derived expanded NK cells with or without CD33mAb was effective in decitabine-treated AML. METHODS: Bone marrow aspirates were collected from patients at pre- and post-NK cell infusion. NK cells from healthy donors were expanded for 14 days using irradiated K562 feeder cells displaying membrane-bound IL-21 (mbIL-21). Patient samples were used to test in vitro activity of mbIL-21 NK cells ± CD33m Ab-dependent cellular cytotoxicity (ADCC) and AML patient derived xenograft (PDX) mice were developed to test in vivo activity. RESULTS: Upon incubation with primary AML blasts, mbIL-21 NK cells showed variable donor-dependent intra-cellular interferon-γ production, which increased with CD33mAb-coated AML. ADCC assays revealed mbIL-21 NK cells effectively lysed primary AML blasts with higher activity on CD33mAb-coated AML. Importantly, CD33mAb-dependent enhanced cytotoxicity by mbIL-21 NK cells was maintained in AML cells from patients even 24 days post-decitabine treatment. In vivo infusion of mbIL-21 NK cells in AML PDX mice, treated with CD33mAb, reduced the tumor burden. DISCUSSION: These data show the therapeutic utility of mbIL-21 NK cells that can be further potentiated by addition of CD33mAb in AML.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Membrana Celular/metabolismo , Citotoxicidad Inmunológica/efectos de los fármacos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Interleucinas/metabolismo , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Anciano , Animales , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Femenino , Humanos , Interleucina-2/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/terapia , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Unión Proteica/efectos de los fármacos , Ingeniería de Proteínas , Vidarabina/análogos & derivados , Vidarabina/farmacología
3.
Blood Adv ; 6(20): 5641-5654, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-35486482

RESUMEN

Successes with anti-CD20 antibodies in chronic lymphocytic leukemia (CLL) and enhanced activity of Fc-engineered vs unmodified antibody therapy suggest a potentially impactful role for natural killer (NK) cells and other innate immune cells in controlling this disease. Stimulated NK cells have shown promise as a cellular therapy, but their application has been constrained by limited expansion capacity and low cytotoxic activity against CLL cells. Here, we demonstrate that both healthy donor-derived and CLL patient-derived NK cells expand rapidly when stimulated with feeder cells expressing membrane-bound interleukin-21 (mbIL-21) and have potent cytotoxic activity against allogeneic or autologous CLL cells. Combination with anti-CD20 antibodies significantly enhances NK recognition and killing of CLL targets. As any CLL immune therapy would likely be given in combination, we assess commonly used treatments and demonstrate that ibrutinib has mixed suppressive and protective effects on expanded NK cells, whereas expanded NKs are highly resistant to venetoclax. We demonstrate efficacy in vivo in 2 xenograft mouse models of human CLL that support building upon a regimen of venetoclax and obinutuzumab with mbIL-21-expanded NK cells. Collectively, these data support development of mbIL-21-expanded NKs combined with the CD20 antibody obinutuzumab and venetoclax in the treatment of CLL.


Asunto(s)
Antineoplásicos , Trasplante de Células Madre Hematopoyéticas , Leucemia Linfocítica Crónica de Células B , Animales , Humanos , Ratones , Antineoplásicos/uso terapéutico , Células Asesinas Naturales , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico
4.
Cell Rep ; 40(3): 111115, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858552

RESUMEN

The existence of "leukemia-initiating cells" (LICs) in chronic lymphocytic leukemia (CLL) remains controversial due to the difficulty in isolating and identifying the tumor-initiating cells. Here, we demonstrate a microchannel electroporation (MEP) microarray that injects RNA-detecting probes into single live cells, allowing the imaging and characterization of heterogeneous LICs by intracellular RNA expression. Using limited-cell FACS sequencing (LC-FACSeq), we can detect and monitor rare live LICs during leukemogenesis and characterize their differential drug sensitivity. Disease-associated mutation accumulation in developing B lymphoid but not myeloid lineage in CLL patient hematopoietic stem cells (CLL-HSCs), and development of independent clonal CLL-like cells in murine patient-derived xenograft models, suggests the existence of CLL LICs. Furthermore, we identify differential protein ubiquitination and unfolding response signatures in GATA2high CLL-HSCs that exhibit increased sensitivity to lenalidomide and resistance to fludarabine compared to GATA2lowCLL-HSCs. These results highlight the existence of therapeutically targetable disease precursors in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Células Cultivadas , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , ARN/metabolismo
5.
Blood Adv ; 5(16): 3152-3162, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34424320

RESUMEN

Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.


Asunto(s)
Neoplasias Hematológicas , Inmunoconjugados , Leucemia Linfocítica Crónica de Células B , Linfoma de Células del Manto , Animales , Anticuerpos Monoclonales , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Ratones
6.
Blood Adv ; 3(8): 1255-1266, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30987970

RESUMEN

Prostate apoptosis response 4 (Par-4) is a tumor suppressor that prevents proliferation and induces cell death in several solid tumors. However, its role in B-cell malignancies has not been elucidated. To describe the role of Par-4 in chronic lymphocytic leukemia (CLL) pathogenesis, we developed a B-cell-specific human Par-4-overexpressing mouse model of CLL using the TCL1 leukemia model. While Par-4 transgenic mice did not display any obvious defects in B-cell development or function, disease burden as evidenced by abundance of CD19+CD5+ B cells in the peripheral blood was significantly reduced in Par-4 × TCL1 mice compared with TCL1 littermates. This conferred a survival advantage on the Par-4-overexpressing mice. In addition, a B-cell-specific knockout model displayed the opposite effect, where lack of Par-4 expression resulted in accelerated disease progression and abbreviated survival in the TCL1 model. Histological and flow cytometry-based analysis of spleen and bone marrow upon euthanasia revealed comparable levels of malignant B-cell infiltration in Par-4 × TCL1 and TCL1 individuals, indicating delayed but pathologically normal disease progression in Par-4 × TCL1 mice. In vivo analysis of splenic B-cell proliferation by 5-ethynyl-2-deoxyuridine incorporation indicated >50% decreased expansion of CD19+CD5+ cells in Par-4 × TCL1 mice compared with TCL1 littermates. Moreover, reduced nuclear p65 levels were observed in Par-4 × TCL1 splenic B cells compared with TCL1, suggesting suppressed NF-κB signaling. These findings have identified an in vivo antileukemic role for Par-4 through an NF-κB-dependent mechanism in TCL1-mediated CLL-like disease progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Carcinogénesis/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Carcinogénesis/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA