Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(7): 3648-3655, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015125

RESUMEN

Dams contribute to water security, energy supply, and flood protection but also fragment habitats of freshwater species. Yet, a global species-level assessment of dam-induced fragmentation is lacking. Here, we assessed the degree of fragmentation of the occurrence ranges of ∼10,000 lotic fish species worldwide due to ∼40,000 existing large dams and ∼3,700 additional future large hydropower dams. Per river basin, we quantified a connectivity index (CI) for each fish species by combining its occurrence range with a high-resolution hydrography and the locations of the dams. Ranges of nondiadromous fish species were more fragmented (less connected) (CI = 73 ± 28%; mean ± SD) than ranges of diadromous species (CI = 86 ± 19%). Current levels of fragmentation were highest in the United States, Europe, South Africa, India, and China. Increases in fragmentation due to future dams were especially high in the tropics, with declines in CI of ∼20 to 40 percentage points on average across the species in the Amazon, Niger, Congo, Salween, and Mekong basins. Our assessment can guide river management at multiple scales and in various domains, including strategic hydropower planning, identification of species and basins at risk, and prioritization of restoration measures, such as dam removal and construction of fish bypasses.


Asunto(s)
Biodiversidad , Peces/clasificación , Migración Animal , Animales , Conservación de los Recursos Naturales , Ecosistema , Peces/fisiología , Geografía , Ríos/química
2.
Environ Microbiol ; 24(12): 5721-5733, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094736

RESUMEN

Antibiotics are essential for modern medicine, they are employed frequently in hospitals and, therefore, present in hospital wastewater. Even in concentrations, that are lower than the minimum inhibitory concentrations (MICs) of susceptible bacteria, antibiotics may exert an influence and select resistant bacteria, if they exceed the MSCs (minimal selective concentrations) of resistant strains. Here, we compare the MSCs of fluorescently labelled Acinetobacter baylyi strains harboring spontaneous resistance mutations or a resistance plasmid with antibiotic concentrations determined in hospital wastewater. Low MSCs in the µg/L range were measured for the quinolone ciprofloxacin (17 µg/L) and for the carbapenem meropenem (30 µg/L). A 24 h continuous analysis of hospital wastewater showed daily fluctuations of the concentrations of these antibiotics with distinctive peaks at 7-8 p.m. and 5-6 a.m. The meropenem concentrations were always above the MSC and MIC values of A. baylyi. In addition, the ciprofloxacin concentrations were in the range of the lowest MSC for about half the time. These results explain the abundance of strains with meropenem and ciprofloxacin resistance in hospital wastewater and drains.


Asunto(s)
Antibacterianos , Aguas Residuales , Antibacterianos/farmacología , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Ciprofloxacina/farmacología , Hospitales
3.
Environ Sci Technol ; 56(20): 14397-14408, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36170232

RESUMEN

The presence of anthropogenic organic micropollutants in rivers poses a long-term threat to surface water quality. To describe and quantify the in-stream fate of single micropollutants, the advection-dispersion-reaction (ADR) equation has been used previously. Understanding the dynamics of the mixture effects and cytotoxicity that are cumulatively caused by micropollutant mixtures along their flow path in rivers requires a new concept. Thus, we extended the ADR equation from single micropollutants to defined mixtures and then to the measured mixture effects of micropollutants extracted from the same river water samples. Effects (single and mixture) are expressed as effect units and toxic units, the inverse of effect concentrations and inhibitory concentrations, respectively, quantified using a panel of in vitro bioassays. We performed a Lagrangian sampling campaign under unsteady flow, collecting river water that was impacted by a wastewater treatment plant (WWTP) effluent. To reduce the computational time, the solution of the ADR equation was expressed by a convolution-based reactive transport approach, which was used to simulate the dynamics of the effects. The dissipation dynamics of the individual micropollutants were reproduced by the deterministic model following first-order kinetics. The dynamics of experimental mixture effects without known compositions were captured by the model ensemble obtained through Bayesian calibration. The highly fluctuating WWTP effluent discharge dominated the temporal patterns of the effect fluxes in the river. Minor inputs likely from surface runoff and pesticide diffusion might contribute to the general effect and cytotoxicity pattern but could not be confirmed by the model-based analysis of the available effect and chemical data.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Teorema de Bayes , Monitoreo del Ambiente , Plaguicidas/análisis , Ríos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Conserv Biol ; 35(2): 643-653, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32671869

RESUMEN

Megafauna species are intrinsically vulnerable to human impact. Freshwater megafauna (i.e., freshwater animals ≥30 kg, including fishes, mammals, reptiles, and amphibians) are subject to intensive and increasing threats. Thirty-four species are listed as critically endangered on the International Union for Conservation of Nature (IUCN). Red List of Threatened Species, the assessments for which are an important basis for conservation actions but remain incomplete for 49 (24%) freshwater megafauna species. Consequently, the window of opportunity for protecting these species could be missed. Identifying the factors that predispose freshwater megafauna to extinction can help predict their extinction risk and facilitate more effective and proactive conservation actions. Thus, we collated 8 life-history traits for 206 freshwater megafauna species. We used generalized linear mixed models to examine the relationships between extinction risk based on the IUCN Red List categories and the combined effect of multiple traits, as well as the effect of human impact on these relationships for 157 classified species. The most parsimonious model included human impact and traits related to species' recovery potential including life span, age at maturity, and fecundity. Applying the most parsimonious model to 49 unclassified species predicted that 17 of them are threatened. Accounting for model predictions together with IUCN Red List assessments, 50% of all freshwater megafauna species are considered threatened. The Amazon and Yangtze basins emerged as global diversity hotspots of threatened freshwater megafauna, in addition to existing hotspots, including the Ganges-Brahmaputra and Mekong basins and the Caspian Sea region. Assessment and monitoring of those species predicted to be threatened are needed, especially in the Amazon and Yangtze basins. Investigation of life-history traits and trends in population and distribution, regulation of overexploitation, maintaining river connectivity, implementing protected areas focusing on freshwater ecosystems, and integrated basin management are required to protect threatened freshwater megafauna in diversity hotspots.


Efectos Combinados de los Rasgos de la Historia de Vida y el Impacto Humano sobre el Riesgo de Extinción de la Megafauna de Agua Dulce Resumen Las especies de megafauna son intrínsecamente vulnerables al impacto humano. La megafauna de agua dulce (es decir, los animales ≥30 kg, incluyendo peces, mamíferos, reptiles y anfibios) está sujeta a amenazas intensivas y en aumento. La Lista Roja de la UICN (Unión Internacional para la Conservación de la Naturaleza) lista a 34 especies en peligro crítico de extinción. Las evaluaciones para esta lista son un cimiento importante para las acciones de conservación, pero permanecen incompletas para 49 (24%) de las especies de megafauna de agua dulce. Como consecuencia, la ventana de oportunidad para la protección de estas especies podría perderse. La identificación de los factores que predisponen a la megafauna de agua dulce a la extinción puede ayudar a predecir el riesgo de extinción para cada especie y facilitar acciones de conservación más efectivas y proactivas. Por lo anterior, recopilamos ocho rasgos de historia de vida para 206 especies de megafauna de agua dulce. Usamos modelos lineales generalizados mixtos para examinar las relaciones entre el riesgo de extinción medido con base en las categorías de la Lista Roja de la UICN y el efecto combinado de diferentes rasgos, así como el efecto del impacto humano sobre estas relaciones para 157 especies clasificadas. El modelo más parsimonioso incluyó al impacto humano y a los rasgos relacionados con el potencial de recuperación de las especies como el ciclo de vida, edad de madurez y fecundidad. La aplicación de este modelo a las 49 especies sin clasificación pronosticó que 17 de ellas están amenazadas. Si consideramos las predicciones del modelo junto con las evaluaciones de la Lista Roja de la UICN, el 50% de todas las especies de megafauna de agua dulce están consideradas como amenazadas. Las cuencas del Amazonas y del Yangtze surgieron como puntos calientes de diversidad mundial, junto con las cuencas del Ganges-Brahmaputra y el Mekong y la región del mar Caspio. Es urgente evaluar y monitorear a aquellas especies que se pronostica estén amenazadas, especialmente en las cuencas del Amazonas y del Yangtze. Se requieren investigaciones sobre los rasgos de la historia de vida y las tendencias poblacionales y de distribución, la regulación de la sobreexplotación, el mantenimiento de la conectividad entre ríos, la implementación de áreas protegidas enfocadas en los ecosistemas de agua dulce y un manejo integrado de cuencas para proteger a la megafauna de agua dulce en los puntos calientes de diversidad.


Asunto(s)
Ecosistema , Extinción Biológica , Animales , Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Agua Dulce , Humanos
5.
Environ Sci Technol ; 55(8): 5106-5116, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33759504

RESUMEN

Suspended particulate matter (SPM) plays an important role in the fate of organic micropollutants in rivers during rain events, when sediments are remobilized and turbid runoff components enter the rivers. Under baseflow conditions, the SPM concentration is low and the contribution of SPM-bound contaminants to the overall risk of organic contaminants in rivers is assumed to be negligible. To challenge this assumption, we explored if SPM may act as a source or sink for all or specific groups of organic chemicals in a small river. The concentrations of over 600 contaminants and the mixture effects stemming from all chemicals in in vitro bioassays were measured for river water, SPM, and the surface sediment after solid-phase extraction or exhaustive solvent extraction. The bioavailable fractions of chemicals and mixture effects were estimated after passive equilibrium sampling of enriched SPM slurries and sediments in the lab. Dissolved compounds dominated the total chemical burden in the water column (water plus SPM) of the river, whereas SPM-bound chemicals contributed up to 46% of the effect burden even if the SPM concentration in rivers was merely 1 mg/L. The equilibrium between water and SPM was still not reached under low-flow conditions with SPM as a source of water contamination. The ratios of SPM-associated to sediment-associated neutral and hydrophobic chemicals as well as the ratios of the mixture effects expressed as bioanalytical equivalent concentrations were close to 1, suggesting that the surface sediment can be used as a proxy for SPM under baseflow conditions when the sampling of a large amount of water to obtain sufficient SPM cannot be realized.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Agua Dulce , Sedimentos Geológicos , Material Particulado/análisis , Contaminantes Químicos del Agua/análisis
6.
Nature ; 588(7838): 395-396, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328660
7.
Proc Biol Sci ; 287(1922): 20192643, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126954

RESUMEN

Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.


Asunto(s)
Conservación de los Recursos Naturales , Animales , Evolución Biológica , Tamaño Corporal , Extinción Biológica
8.
Glob Chang Biol ; 25(11): 3883-3892, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393076

RESUMEN

Freshwater ecosystems are among the most diverse and dynamic ecosystems on Earth. At the same time, they are among the most threatened ecosystems but remain underrepresented in biodiversity research and conservation efforts. The rate of decline of vertebrate populations is much higher in freshwaters than in terrestrial or marine realms. Freshwater megafauna (i.e., freshwater animals that can reach a body mass ≥30 kg) are intrinsically prone to extinction due to their large body size, complex habitat requirements and slow life-history strategies such as long life span and late maturity. However, population trends and distribution changes of freshwater megafauna, at continental or global scales, remain unclear. In the present study, we compiled population data of 126 freshwater megafauna species globally from the Living Planet Database and available literature, and distribution data of 44 species inhabiting Europe and the United States from literature and databases of the International Union for Conservation of Nature and NatureServe. We quantified changes in population abundance and distribution range of freshwater megafauna species. Globally, freshwater megafauna populations declined by 88% from 1970 to 2012, with the highest declines in the Indomalaya and Palearctic realms (-99% and -97%, respectively). Among taxonomic groups, mega-fishes exhibited the greatest global decline (-94%). In addition, freshwater megafauna experienced major range contractions. For example, distribution ranges of 42% of all freshwater megafauna species in Europe contracted by more than 40% of historical areas. We highlight the various sources of uncertainty in tracking changes in populations and distributions of freshwater megafauna, such as the lack of monitoring data and taxonomic and spatial biases. The detected trends emphasize the critical plight of freshwater megafauna globally and highlight the broader need for concerted, targeted and timely conservation of freshwater biodiversity.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Europa (Continente) , Agua Dulce
9.
Environ Sci Technol ; 53(13): 7877-7886, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31177773

RESUMEN

The aim of the current study was to understand and develop models to predict the pH-dependent toxicity of ionizable pharmaceuticals in embryos of the zebrafish Danio rerio. We found a higher uptake and toxicity with increasing neutral fraction of acids (diclofenac, genistein, naproxen, torasemide, and warfarin) and bases (metoprolol and propranolol). Simple mass balance models accounting for the partitioning to lipids and proteins in the zebrafish embryo were found to be suitable to predict the bioconcentration after 96 h of exposure if pH values did not differ much from the internal pH of 7.55. For other pH values, a kinetic ion-trap model for the zebrafish embryo explained the pH dependence of biouptake and toxicity. The total internal lethal concentrations killing 50% of the zebrafish embryos (ILC50) were calculated from the measured BCF and LC50. The resulting ILC50 were independent of external pH. Critical membrane concentrations were deduced by an internal mass balance model, and apart from diclofenac, whose specific toxicity in fish had already been established, all pharmaceuticals were confirmed to act as baseline toxicants in zebrafish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Diclofenaco , Embrión no Mamífero , Concentración de Iones de Hidrógeno
10.
Anal Bioanal Chem ; 411(17): 3743-3756, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30919016

RESUMEN

Microplastics are observed ubiquitously and in different environmental compartments ranging from marine waters and sediments to freshwater and terrestrial ecosystems including biota. Over the last decade, several methods have been applied and advanced to monitor and quantify microplastics, to identify the polymer material and to describe the particle properties, such as size, shape or colour. In most cases, the overarching aim is to elucidate patterns of occurrence that might result from (micro)plastic emissions and environmental fate. But the applied methods are subject to uncertainties and boundary conditions, be it spatial resolution that excludes the smallest microplastics or limitations in distinguishing microplastic particles from natural particles. This critical review provides an overview of the state-of-the-art procedures in microplastic analysis, gives examples of potential ways ahead and remaining challenges and classifies available methods according to the underlying research question. The resulting decision tree for the selection of analytical methods starts with a common research question and takes specificities of the environmental matrix into account. The procedural range consequently ranges from fast screening methods based on visual identification to a highly sophisticated combination of analytical methods that provide information on polymer type, particle number or mass and eventually particle size but are very time-consuming and expensive. Standardization of microplastic analytical methods on the basis of the research aim will help to make study results comparable and obtain a more comprehensive picture of microplastic abundance and fate in the environment. Graphical abstract.

11.
Glob Chang Biol ; 24(4): 1405-1416, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29245177

RESUMEN

Microplastics (plastics <5 mm, including nanoplastics which are <0.1 µm) originate from the fragmentation of large plastic litter or from direct environmental emission. Their potential impacts in terrestrial ecosystems remain largely unexplored despite numerous reported effects on marine organisms. Most plastics arriving in the oceans were produced, used, and often disposed on land. Hence, it is within terrestrial systems that microplastics might first interact with biota eliciting ecologically relevant impacts. This article introduces the pervasive microplastic contamination as a potential agent of global change in terrestrial systems, highlights the physical and chemical nature of the respective observed effects, and discusses the broad toxicity of nanoplastics derived from plastic breakdown. Making relevant links to the fate of microplastics in aquatic continental systems, we here present new insights into the mechanisms of impacts on terrestrial geochemistry, the biophysical environment, and ecotoxicology. Broad changes in continental environments are possible even in particle-rich habitats such as soils. Furthermore, there is a growing body of evidence indicating that microplastics interact with terrestrial organisms that mediate essential ecosystem services and functions, such as soil dwelling invertebrates, terrestrial fungi, and plant-pollinators. Therefore, research is needed to clarify the terrestrial fate and effects of microplastics. We suggest that due to the widespread presence, environmental persistence, and various interactions with continental biota, microplastic pollution might represent an emerging global change threat to terrestrial ecosystems.


Asunto(s)
Monitoreo del Ambiente , Contaminación Ambiental , Plásticos , Animales , Ecosistema , Hongos , Invertebrados
12.
Bioscience ; 67(10): 919-927, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29599539

RESUMEN

Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation.

13.
Environ Sci Technol ; 51(21): 12254-12263, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28965391

RESUMEN

In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.


Asunto(s)
Plásticos , Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Difusión , Cinética
14.
Environ Sci Technol ; 51(3): 1679-1686, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28001053

RESUMEN

Currently, there is a trend toward an increasing use of biopesticides assumed to be environmentally friendly, such as Bacillus thuringiensis (Bt). Studies of the Bt toxicity to nontarget organisms have reported low effects at high exposure levels, which is interpreted as indicating negligible risk to nontarget organisms. We investigated the response of the nontarget organism Daphnia magna to waterborne DiPel ES, a globally used Bt formulation. Neonates and adults were exposed for 48 h to a wide range of concentrations, and immobilization and mortality were monitored. Whole body biomarkers (body weight, protein, chitobiase, catalase, xenobiotic metabolism, and acetylcholinesterase) were measured in the adults. The immobilization and mortality of the neonates were affected in a nonmonotonic and inverted U-shaped pattern with EC50s that were ∼105-fold lower than those reported by the manufacturer. The immobilization of adults demonstrated a similar pattern, but significant mortality was not observed. The biomarker results revealed multiphasic dose-response curves, which suggested toxicity mechanisms that affected various physiological pathways. The main particle size in exposure media was in the size range of bacterial spores and crystal toxins. However, the chemical heterogeneity was nonmonotonic, with a change in the phase at the maximum of toxicity (∼5 µL L-1), which might explain the observed nonmonotonic effects. These results demonstrate the vulnerability of a nontarget organism to a biopesticide that is considered to be safe, while challenging the universal applicability of the central ecotoxicological assumption of monotonicity.


Asunto(s)
Bacillus thuringiensis , Daphnia/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Animales , Catalasa/metabolismo , Desinfectantes/farmacología , Contaminantes Químicos del Agua/toxicidad
15.
Sci Data ; 10(1): 16, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609615

RESUMEN

Promoting a transition to low-carbon energy systems to mitigate climate change requires an optimization of renewable energy (RE) planning. However, curated data for the most promising RE technologies, hydro-, wind and solar power, are missing, which limits data-based decision-making support. Here, a spatially explicit database for existing and proposed renewable power plants is provided: The Renewable Power Plant database for Africa (RePP Africa) encompasses 1074 hydro-, 1128 solar, and 276 wind power plant records. For each power plant, geographic coordinates, country, construction status, and capacity (in megawatt) are reported. The number of RePP Africa records exceeds the respective values in other existing open-access databases and matches available cumulative capacity data reported by international energy organizations best with deviations <13% for hydro-, <23% for wind, and <32% for solar power plants. This contemporary database is the most harmonized open-accessible reference source on RE power plants across Africa for stakeholders from science, (non-)governmental organizations, consulting, and industry; providing a fundamental data basis for the development of an integrated sustainable RE mix.

16.
Landslides ; 20(3): 511-529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36530578

RESUMEN

This study aims at providing an overview of the socioeconomic consequences that debris-flow events have caused in Brazil, positioning the country in the international scenario and identifying areas where targeted actions are necessary. The analysis is conducted by calculating the debris-flow mortality rate (MR) and by using the so-called F-N plots (frequency of events that have caused N or more fatalities vs. the number of fatalities), based on a compilation of debris-flow-related disasters from 1920 to 2021. In total, 45 debris-flow events were documented in the considered period, responsible for 5771 fatalities and more than 5.5 billion USD in economic losses. The Serra do Mar Mountain Range is the main site of reported debris-flow occurrences (64.5%), followed by Serra da Mantiqueira (13.3%), and Serra Geral (13.3%). Southeast Brazil (SEB) is the region most affected by debris-flow events, due to the highest population density and the development of several cities in hilly areas, such as Petrópolis (Rio de Janeiro state) and Cubatão (São Paulo state). The debris-flow MR of SEB is higher than any other region in Brazil, pushing the national debris-flow MR upwards, and the F-N curve of SEB consolidates the region as the one with the highest risk to the phenomenon, indicating a higher probability of fatal events. The F-N plots further show that debris-flow events in Brazil represent a higher societal risk than in countries such as China, Japan and Italy. While there are differences in country size and the scale effect should be considered, these results highlight the urgent need for investments in disaster prevention and preparedness programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s10346-022-01984-7.

17.
Environ Sci Pollut Res Int ; 30(21): 59813-59825, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37016250

RESUMEN

A major source of anthropogenic polycyclic aromatic hydrocarbon (PAH) inputs into marine environments are diffuse emissions which result in low PAH concentrations in the ocean water, posing a potential threat for the affected ecosystems. However, the remediation of low-dosage PAH contaminations through microbial processes remains largely unknown. Here, we developed a process-based numerical model to simulate batch cultures receiving repeated low-dosage naphthalene pulses compared to the conventionally used one-time high-dosage. Pulsing frequency as well as dosage concentration had a large impact on the degradation efficiency. After 10 days, 99.7%, 97.2%, 86.6%, or 83.5% of the 145 mg L-1 naphthalene was degraded when given as a one-time high-dosage or in 2, 5, or 10 repeated low-concentration dosages equally spaced throughout the experiment, respectively. If the simulation was altered, giving the system that received 10 pulses time to recover to 99.7%, pulsing patterns affected the degradation of naphthalene. When pulsing 10 days at once per day, naphthalene accumulated following each pulse and if the degradation was allowed to continue until the recovered state was reached, the incubation time was prolonged to 17 days with a generation time of 3.81 days. If a full recovery was conditional before the next pulse was added, the scenario elongated to 55 days and generation time increased to 14.15 days. This indicates that dissolution kinetics dominate biodegradation kinetics, and the biomass concentration of PAH-degrading bacteria alone is not a sufficient indicator for quantifying active biodegradation. Applying those findings to the environment, a one-time input of a high dosage is potentially degraded faster than repeated low-dosage PAH pollution and repeated low-dosage input could lead to PAH accumulation in vulnerable pristine environments. Further research on the overlooked field of chronic low-dosage PAH contamination is necessary.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Ecosistema , Naftalenos , Bacterias/metabolismo , Biodegradación Ambiental
18.
PLoS One ; 18(8): e0290304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37590303

RESUMEN

The diversity of life sensu lato comprises both biological and cultural diversity, described as "biocultural diversity." Similar to plant and animal species, cultures and languages are threatened by extinction. Since drylands are pivotal systems for nature and people alike, we use oases in the Sahara Desert as model systems for examining spatial patterns and trends of biocultural diversity. We identify both the underlying drivers of biodiversity and the potential proxies that are fundamental for understanding reciprocal linkages between biological and cultural diversity in oases. Using oases in Algeria as an example we test current indices describing and quantifying biocultural diversity and identify their limitations. Finally, we discuss follow-up research questions to better understand the underlying mechanisms that control the coupling and decoupling of biological and cultural diversity in oases.


Asunto(s)
Biodiversidad , Diversidad Cultural , Animales , África del Norte , Argelia , Lenguaje
19.
Commun Biol ; 6(1): 690, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402788

RESUMEN

Competitive hierarchies in diverse ecological communities have long been thought to lead to instability and prevent coexistence. However, system stability has never been tested, and the relation between hierarchy and instability has never been explained in complex competition networks parameterised with data from direct observation. Here we test model stability of 30 multispecies bryozoan assemblages, using estimates of energy loss from observed interference competition to parameterise both the inter- and intraspecific interactions in the competition networks. We find that all competition networks are unstable. However, instability is mitigated considerably by asymmetries in the energy loss rates brought about by hierarchies of strong and weak competitors. This asymmetric organisation results in asymmetries in the interaction strengths, which reduces instability by keeping the weight of short (positive) and longer (positive and negative) feedback loops low. Our results support the idea that interference competition leads to instability and exclusion but demonstrate that this is not because of, but despite, competitive hierarchy.


Asunto(s)
Ecosistema , Retroalimentación
20.
ACS Environ Au ; 2(6): 536-548, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37101725

RESUMEN

Long-term accumulation in the soils of ubiquitous organic pollutants such as many polycyclic aromatic hydrocarbons (PAHs) depends on deposition from the atmosphere, revolatilization, leaching, and degradation processes such as photolysis and biodegradation. Quantifying the phase distribution and fluxes of these compounds across environmental compartments is thus crucial to understand the long-term contaminant fate. The gas-phase exchange between soil and atmosphere follows chemical fugacity gradients that can be approximated by gas-phase concentrations, yet which are difficult to measure directly. Thus, passive sampling, measured sorption isotherms, or empirical relationships to estimate sorption distribution have been combined in this study to determine aqueous (or gas) phase concentrations from measured bulk concentrations in soil solids. All these methods have their strengths and weaknesses but agree within 1 order of magnitude except for ex situ passive samplers employed in soil slurries, which estimated much lower concentrations in soil water and gas likely due to experimental artifacts. In field measurements, PAH concentrations determined in the atmosphere show a pronounced seasonality with some revolatilization during summer and gaseous deposition during winter, but overall dry deposition dominates annual mean fluxes. The characteristic patterns of PAHs in the different phases (gas phase, atmospheric passive samplers, bulk deposition, and soil solids) confirm the expected compound-specific distribution pattern and behavior. Since revolatilization fluxes in summer are only minor and wet and dry deposition is ongoing, our results clearly show that the PAH loads in topsoils will continue to increase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA