Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Pharmacol ; 94(2): 823-833, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29853495

RESUMEN

Kynurenic acid (KYNA) plays a significant role in maintaining normal brain function, and abnormalities in KYNA levels have been associated with various central nervous system disorders. Confirmation of its causality in human diseases requires safe and effective modulation of central KYNA levels in the clinic. The kynurenine aminotransferases (KAT) II enzyme represents an attractive target for pharmacologic modulation of central KYNA levels; however, KAT II and KYNA turnover kinetics, which could contribute to the duration of pharmacologic effect, have not been reported. In this study, the kinetics of central KYNA-lowering effect in rats and nonhuman primates (NHPs, Cynomolgus macaques) was investigated using multiple KAT II irreversible inhibitors as pharmacologic probes. Mechanistic pharmacokinetic-pharmacodynamic analysis of in vivo responses to irreversible inhibition quantitatively revealed that 1) KAT II turnover is relatively slow [16-76 hours' half-life (t1/2)], whereas KYNA is cleared more rapidly from the brain (<1 hour t1/2) in both rats and NHPs, 2) KAT II turnover is slower in NHPs than in rats (76 hours vs. 16 hours t1/2, respectively), and 3) the percent contribution of KAT II to KYNA formation is constant (∼80%) across rats and NHPs. Additionally, modeling results enabled establishment of in vitro-in vivo correlation for both enzyme turnover rates and drug potencies. In summary, quantitative translational analysis confirmed the feasibility of central KYNA modulation in humans. Model-based analysis, where system-specific properties and drug-specific properties are mechanistically separated from in vivo responses, enabled quantitative understanding of the KAT II-KYNA pathway, as well as assisted development of promising candidates to test KYNA hypothesis in humans.


Asunto(s)
Encéfalo/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Ácido Quinurénico/análisis , Transaminasas/metabolismo , Animales , Química Encefálica/efectos de los fármacos , Células Cultivadas , Cromatografía Liquida , Inhibidores Enzimáticos/farmacología , Femenino , Semivida , Humanos , Macaca fascicularis , Masculino , Pirazoles/administración & dosificación , Pirazoles/farmacología , Ratas , Espectrometría de Masas en Tándem , Transaminasas/antagonistas & inhibidores
2.
Bioorg Med Chem Lett ; 23(7): 1961-6, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23466229

RESUMEN

The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Pirazoles/farmacología , Transaminasas/antagonistas & inhibidores , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Transaminasas/metabolismo
3.
Biochem J ; 444(1): 79-88, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22397330

RESUMEN

SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.


Asunto(s)
Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Pirrolidinas/farmacología , Esfingosina/análogos & derivados , Sulfonas/farmacología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Humanos , Lisofosfolípidos/sangre , Metanol , Fosforilación , Pirrolidinas/síntesis química , Pirrolidinas/metabolismo , Esfingosina/sangre , Esfingosina/metabolismo , Especificidad por Sustrato , Sulfonas/síntesis química , Sulfonas/metabolismo
4.
Proc Natl Acad Sci U S A ; 107(34): 15240-5, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696890

RESUMEN

Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) epsilon or delta can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1epsilon and CK1delta using pharmacological inhibitors (PF-4800567 and PF-670462, respectively) alongside genetic knockout and knockdown to reveal that CK1 activity is essential to molecular pacemaking. Moreover, CK1delta is the principal regulator of the clock period: pharmacological inhibition of CK1delta, but not CK1epsilon, significantly lengthened circadian rhythms in locomotor activity in vivo and molecular oscillations in the suprachiasmatic nucleus (SCN) and peripheral tissue slices in vitro. Period lengthening mediated by CK1delta inhibition was accompanied by nuclear retention of PER2 protein both in vitro and in vivo. Furthermore, phase mapping of the molecular clockwork in vitro showed that PF-670462 treatment lengthened the period in a phase-specific manner, selectively extending the duration of PER2-mediated transcriptional feedback. These findings suggested that CK1delta inhibition might be effective in increasing the amplitude and synchronization of disrupted circadian oscillators. This was tested using arrhythmic SCN slices derived from Vipr2(-/-) mice, in which PF-670462 treatment transiently restored robust circadian rhythms of PER2::Luc bioluminescence. Moreover, in mice rendered behaviorally arrhythmic by the Vipr2(-/-) mutation or by constant light, daily treatment with PF-670462 elicited robust 24-h activity cycles that persisted throughout treatment. Accordingly, selective pharmacological targeting of the endogenous circadian regulator CK1delta offers an avenue for therapeutic modulation of perturbed circadian behavior.


Asunto(s)
Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Ritmo Circadiano/fisiología , Animales , Secuencia de Bases , Caseína Cinasa 1 épsilon/fisiología , Quinasa Idelta de la Caseína/deficiencia , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/fisiología , Ritmo Circadiano/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Técnicas In Vitro , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Circadianas Period/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , ARN Interferente Pequeño/genética , Receptores de Tipo II del Péptido Intestinal Vasoactivo/deficiencia , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/fisiología
5.
Assay Drug Dev Technol ; 6(1): 95-103, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18315498

RESUMEN

The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.


Asunto(s)
Antibacterianos , Inhibidores Enzimáticos/farmacología , Péptido Sintasas/antagonistas & inhibidores , Peptidoglicano/biosíntesis , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Cartilla de ADN , Evaluación Preclínica de Medicamentos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Espectroscopía de Resonancia Magnética , Proteínas de Unión a Maltosa , Pruebas de Sensibilidad Microbiana , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/enzimología , Receptores Purinérgicos P2/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad
6.
J Med Chem ; 61(20): 9301-9315, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30289257

RESUMEN

The biological functions of the dual bromodomains of human transcription-initiation-factor TFIID subunit 1 (TAF1(1,2)) remain unknown, although TAF1 has been identified as a potential target for oncology research. Here, we describe the discovery of a potent and selective in vitro tool compound for TAF1(2), starting from a previously reported lead. A cocrystal structure of lead compound 2 bound to TAF1(2) enabled structure-based design and structure-activity-relationship studies that ultimately led to our in vitro tool compound, 27 (GNE-371). Compound 27 binds TAF1(2) with an IC50 of 10 nM while maintaining excellent selectivity over other bromodomain-family members. Compound 27 is also active in a cellular-TAF1(2) target-engagement assay (IC50 = 38 nM) and exhibits antiproliferative synergy with the BET inhibitor JQ1, suggesting engagement of endogenous TAF1 by 27 and further supporting the use of 27 in mechanistic and target-validation studies.


Asunto(s)
Bencimidazoles/metabolismo , Diseño de Fármacos , Sondas Moleculares/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
7.
J Med Chem ; 59(11): 5391-402, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27219867

RESUMEN

The biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the N-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed. The substituents either directly displaced and rearranged the conserved solvent network, as in BRD4(1) and TAF1(2), or induced a narrow hydrophobic channel adjacent to the lipophilic shelf, as in BRD9 and CECR2. The preference of distinct substituents for individual bromodomains provided selectivity handles useful for future lead optimization efforts for selective BRD9, CECR2, and TAF1(2) inhibitors.


Asunto(s)
Histona Acetiltransferasas/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Piridonas/farmacología , Pirroles/farmacología , Factores Asociados con la Proteína de Unión a TATA/antagonistas & inhibidores , Factor de Transcripción TFIID/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Agua/química , Sitios de Unión/efectos de los fármacos , Proteínas de Ciclo Celular , Relación Dosis-Respuesta a Droga , Transferencia Resonante de Energía de Fluorescencia , Fluorometría , Histona Acetiltransferasas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Proteínas Nucleares/metabolismo , Piridonas/síntesis química , Piridonas/química , Pirroles/síntesis química , Pirroles/química , Relación Estructura-Actividad , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo
8.
ACS Med Chem Lett ; 4(1): 37-40, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24900560

RESUMEN

A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.

9.
ACS Med Chem Lett ; 3(3): 187-92, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900455

RESUMEN

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.

10.
J Biol Chem ; 280(12): 11704-12, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15634672

RESUMEN

The protein product of an essential gene of unknown function from Streptococcus pneumoniae was expressed and purified for screening in the ThermoFluor affinity screening assay. This assay can detect ligand binding to proteins of unknown function. The recombinant protein was found to be in a dimeric, native-like folded state and to unfold cooperatively. ThermoFluor was used to screen the protein against a library of 3000 compounds that were specifically selected to provide information about possible biological functions. The results of this screen identified pyridoxal phosphate and pyridoxamine phosphate as equilibrium binding ligands (K(d) approximately 50 pM, K(d) approximately 2.5 microM, respectively), consistent with an enzymatic cofactor function. Several nucleotides and nucleotide sugars were also identified as ligands of this protein. Sequence comparison with two enzymes of known structure but relatively low overall sequence homology established that several key residues directly involved in pyridoxal phosphate binding were strictly conserved. Screening a collection of generic drugs and natural products identified the antifungal compound canescin A as an irreversible covalent modifier of the enzyme. Our investigation of this protein indicates that its probable biological role is that of a nucleoside diphospho-keto-sugar aminotransferase, although the preferred keto-sugar substrate remains unknown. These experiments demonstrate the utility of a generic affinity-based ligand binding technology in decrypting possible biological functions of a protein, an approach that is both independent of and complementary to existing genomic and proteomic technologies.


Asunto(s)
Proteínas Bacterianas/fisiología , Genes Esenciales/fisiología , Azúcares de Nucleósido Difosfato/metabolismo , Streptococcus pneumoniae/genética , Transaminasas/fisiología , Secuencia de Aminoácidos , Benzopiranos/metabolismo , Dimerización , Furanos/metabolismo , Ligandos , Datos de Secuencia Molecular , Fosfato de Piridoxal/metabolismo , Piridoxamina/metabolismo , Streptococcus pneumoniae/enzimología
11.
Anal Biochem ; 314(2): 243-52, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12654311

RESUMEN

Assays for two enzymes from Escherichia coli were developed and validated as antibacterial inhibitor screens. The MraY and MurG enzymes were overexpressed and purified as the membrane fraction or to homogeneity, respectively. The MurG enzyme was expressed with a six-histidine tag using an optimized minimal-medium protocol for subsequent purification. Although traditional assays were established, the enzymes were also assayed via a 96-well membrane plate assay and a 384-well scintillation proximity-based assay developed herein. These assays afford a more economical and high-throughput evaluation of inhibitors. A mureidomycin inhibitor mix was used as a control for the assay development and screen validation. Several inhibitors resulting from a high-throughput screen were found and evaluated for potential therapeutic use.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Transferasas/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Pared Celular/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Concentración 50 Inhibidora , Estructura Molecular , Peso Molecular , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Nucleósidos/farmacología , Factores de Tiempo , Transferasas/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA