Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(27): 8344-9, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26106156

RESUMEN

Cellular demolition during apoptosis is completed by executioner caspases, that selectively cleave more than 1,500 proteins but whose individual roles are challenging to assess. Here, we used an optimized site-specific and inducible protease to examine the role of a classic apoptotic node, the caspase-activated DNase (CAD). CAD is activated when caspases cleave its endogenous inhibitor ICAD, resulting in the characteristic DNA laddering of apoptosis. We describe a posttranscriptional gene replacement (PTGR) approach where endogenous biallelic ICAD is knocked down and simultaneously replaced with an engineered allele that is susceptible to inducible cleavage by tobacco etch virus protease. Remarkably, selective activation of CAD alone does not induce cell death, although hallmarks of DNA damage are detected in human cancer cell lines. Our data strongly support that the highly cooperative action of CAD and inhibition of DNA repair systems are critical for the DNA laddering phenotype in apoptosis. Furthermore, the PTGR approach provides a general means for replacing wild-type protein function with a precisely engineered mutant at the transcriptional level that should be useful for cell engineering studies.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Desoxirribonucleasas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular , Supervivencia Celular , Desoxirribonucleasas/genética , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Mutación , Proteolisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
2.
Proc Natl Acad Sci U S A ; 106(37): 15762-7, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19717431

RESUMEN

The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Animales , Autoantígenos/química , Autoantígenos/genética , Transporte Biológico Activo , Línea Celular , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Daño del ADN/fisiología , Reparación del ADN/fisiología , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Humanos , Cinética , Ratones , Modelos Biológicos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
3.
Mol Biol Cell ; 17(9): 3806-18, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16807356

RESUMEN

The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.


Asunto(s)
Polaridad Celular , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Extractos Celulares , Células Cultivadas , Células HeLa , Humanos , Cinetocoros/metabolismo , Prometafase , Transporte de Proteínas , Xenopus/metabolismo
4.
DNA Repair (Amst) ; 4(7): 760-72, 2005 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-15964249

RESUMEN

CENP-A is an essential histone H3 variant found in all eukaryotes examined to date. To begin to determine how CENP-A is assembled into chromatin, we developed a binding assay using sperm chromatin in cell-free extract derived from Xenopus eggs. Our data suggest that the catalytic activities of an unidentified deoxycytidine deaminase and UNG2, a uracil DNA glycosylase, are involved in CENP-A assembly. In support of this model, inhibiting deoxycytidine deaminase with zebularine, or uracil DNA glycosylase with Ugi, uracil or UTP results in a lack of detectable CENP-A on sperm DNA. Conversely, inducing DNA damage increases the level of CENP-A detected on sperm chromatin. Our data suggest that base excision repair may be involved in assembly of this histone H3 variant.


Asunto(s)
Autoantígenos/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Glicosilasas/metabolismo , Reparación del ADN/fisiología , Nucleósido Desaminasas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Autoantígenos/análisis , Autoantígenos/genética , Catálisis , Núcleo Celular/química , Proteína A Centromérica , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/genética , Citidina Desaminasa , Daño del ADN , ADN Glicosilasas/análisis , Replicación del ADN/efectos de los fármacos , Femenino , Fase G2 , Masculino , Datos de Secuencia Molecular , Óvulo/química , Óvulo/metabolismo , Espermatozoides/química , Espermatozoides/metabolismo , Uracilo/análisis , Uracilo/metabolismo , Uracil-ADN Glicosidasa , Xenopus laevis
6.
PLoS One ; 6(3): e17151, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21399697

RESUMEN

Uracil is removed from DNA by the conserved enzyme uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin.


Asunto(s)
Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Glicosilasas/metabolismo , Animales , Apoptosis , Centrómero/metabolismo , Proteína A Centromérica , Daño del ADN , ADN Glicosilasas/antagonistas & inhibidores , Fase G2 , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Rayos Láser , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética , Xenopus , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Epigenetics ; 5(1): 34-40, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20093854

RESUMEN

Centromeric repetitive DNA is the largest missing piece of the Human Genome Project. Rather than being necessary or sufficient to specify the site of mitotic spindle attachment to the chromosome, centromeric DNA sequence is all but irrelevant. Instead, centromeres are thought to be specified by a protein component, a histone H3 variant called Centromere Protein A (CENP-A). This review includes a brief overview of the history of the centromere field, and the current status of knowledge on CENP-A assembly. New evidence for CENP-A recruitment in response to DNA damage implies a mechanism for neocentromere formation, and raises new questions about the epigenetic model of centromere maintenance.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Animales , Centrómero/ultraestructura , Proteína A Centromérica , ADN/metabolismo , Daño del ADN , Epigénesis Genética , Genoma Humano , Histonas/química , Humanos , Schizosaccharomyces/fisiología , Huso Acromático
8.
PLoS One ; 5(8): e12398, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20811641

RESUMEN

Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit.


Asunto(s)
Anafase/genética , Aberraciones Cromosómicas , Cromosomas/genética , Citocinesis/genética , Daño del ADN , Anafase/efectos de la radiación , Animales , Línea Celular , Aberraciones Cromosómicas/efectos de la radiación , Cromosomas/efectos de la radiación , Citocinesis/efectos de la radiación , Rayos Láser , Potoroidae , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Telómero/genética
9.
PLoS One ; 4(11): e7879, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19924290

RESUMEN

The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.


Asunto(s)
Caspasa 8/química , Caspasa 8/metabolismo , Dominio Catalítico , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Mitosis , Fenotipo , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
10.
Cell Cycle ; 5(14): 1537-48, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16861886

RESUMEN

A polyamide-chlorambucil conjugate (1R-Chl) arrests a wide range of human cancer cell lines at the G2/M phase of the cell cycle and downregulates histone H4c gene expression. However, an siRNA against H4c mRNA causes G1/S arrest. Here, we report that 1R-Chl downregulates H4c prior to G2/M arrest. G2/M arrest is the result of extensive DNA damage by 1R-Chl, which leads to phosphorylation of H2A.X at serine 139, recruitment of the Nbs1 repair protein, and a cascade of unknown events culminating with cdc2 phosphorylation at tyrosine 15 and abolishment of cdc2 kinase activity. A control polyamide-Chl conjugate, which neither binds to the H4c gene nor has an anti-proliferative effect by itself, causes G2/M arrest when cells are treated with siRNAs specific for H3 or H4c.


Asunto(s)
Clorambucilo/farmacología , Interfase , Modelos Biológicos , Neoplasias/patología , División Celular , Línea Celular Tumoral , Proliferación Celular , Clorambucilo/uso terapéutico , Fase G2 , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/antagonistas & inhibidores , Histonas/genética , Humanos , Polímeros/farmacología , Polímeros/uso terapéutico , ARN Interferente Pequeño/farmacología
11.
J Virol ; 79(17): 10978-87, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16103149

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr has previously been shown to bind to the cellular uracil DNA glycosylase UNG. We show here that the binding of Vpr to UNG and to the related enzyme SMUG induces their proteasomal degradation. UNG and SMUG were found to be encapsidated in Deltavpr HIV-1 virions but were significantly less abundant in vpr(+) virions. Deltavpr virions contained readily detectable uracil-DNA glycosylase enzymatic activity, while the activity was reduced to undetectable levels in vpr(+) virions. Consistent with proteasomal degradation, complexes that contained Vpr and the E3 ubiquitin ligase components Cul1 and Cul4 were detected in cell lysates. We hypothesized that the interaction of Vpr might be a means for the virus to reduce the frequency of abasic sites in viral reverse transcripts at uracil residues caused by APOBEC3-catalyzed deamination of cytosine residues. Although APOBEC3 is largely neutralized by the Vif accessory protein, residual enzyme could remain in virions that would generate uracils. In support of this, Deltavif vpr(+) HIV-1 produced in the presence of limited amounts of APOBEC3G was significantly more infectious than Deltavif Deltavpr virus. In Addition, vpr(+) HIV-1 replicated more efficiently than vpr(-) virus in cells that expressed limited amounts of APOBEC3G. The findings highlight the importance of cytidine deamination in the virus replication cycle and present a novel function for Vpr.


Asunto(s)
ADN Glicosilasas/metabolismo , Productos del Gen vpr/metabolismo , VIH-1/fisiología , Fragmentos de Péptidos/metabolismo , Desaminasa APOBEC-3G , Línea Celular , Citidina Desaminasa , VIH-1/metabolismo , Humanos , Nucleósido Desaminasas , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas/metabolismo , Proteínas Represoras , Uracil-ADN Glicosidasa , Replicación Viral , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA