Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 484: 116868, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382712

RESUMEN

Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.15 or 50 mg/kg/day) from gestation day (GD) 8.5 to GD18.5. Sesame oil treatment served as control. Changes of the mammary glands of the offspring were studied on postnatal day 45. Further, mammary organoids from untreated mice were cultured under branching induction conditions and exposed for 9 days to BP3 (1 × 10-6 M, 1 × 10-9 M, or 1 × 10-12 M with 0.01% ethanol as control) to evaluate the branching progression. Mice that were exposed to BP3 in utero showed decreased mRNA levels of progesterone receptor (PR) and WNT4. However, estradiol and progesterone serum levels, mammary histomorphology, proliferation, and protein expression of estrogen receptor alpha (ESR1) and PR were not significantly altered. Interestingly, direct exposure to BP3 in vitro also decreased the mRNA levels of PR, RANKL, and amphiregulin without affecting the branching progression. Most effects were found after exposure to 50 mg/kg/day or 1 × 10-6 M of BP3, both related to sunscreen application in humans. In conclusion, exposure to BP3 does not impair mammary branching morphogenesis in our models. However, BP3 affects PR transcriptional expression and its downstream mediators, suggesting that exposure to BP3 might affect other developmental stages of the mammary gland.


Asunto(s)
Benzofenonas , Estradiol , Embarazo , Humanos , Ratones , Femenino , Animales , Benzofenonas/toxicidad , Estradiol/metabolismo , Morfogénesis , ARN Mensajero/metabolismo , Glándulas Mamarias Animales
2.
Mol Psychiatry ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899042

RESUMEN

Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.

3.
Cytometry A ; 103(9): 695-702, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37254600

RESUMEN

This newly established 24-color (30-marker) panel focuses on the characterization of the main human immune cell subtypes and was optimized for the analysis of human whole blood using a full spectrum flow cytometer. The panel covers all main leukocyte populations: neutrophils, eosinophils and basophils, monocytes (with additional subsets), dendritic cells, innate lymphoid cells and lymphocytes. As for lymphocytes, this panel includes CD4+ T helper, Treg cells, and CD8+ cytotoxic T cells. Further T cells subsets are included with special focus on invariant T cells: γδ T cells (including δ2TCR variant), invariant NKT cells and MAIT (mucosal-associated invariant T cells) cells. Additionally, total B cells (including Bregs and plasmocytes), NK cells, and NKT cells are included. For the overall check of activation status of the analyzed immune cells we used HLA-DR, CD38, CD57, CD69, PD-1, and CD94. In addition, we used CD62L, CD45RA, CD27, and CD39 to describe the differentiation status of these cells. The panel was designed to maximize the information that can be obtained from surface markers in order to avoid the need for fixation and permeabilization steps. The presented multimarker panel offers the possibility to discover new immune cell subtypes which in patients and in cohort studies may lead to the identification of altered immune phenotypes and might give a link to immune system based or to certain other diseases. This panel was developed for a full spectrum flow cytometer equipped with a minimum of three lasers. We developed this panel using healthy human fresh blood, however it was also successfully used for staining of isolated human peripheral blood mononuclear cells (PBMC).


Asunto(s)
Inmunidad Innata , Leucocitos Mononucleares , Humanos , Inmunofenotipificación , Leucocitos , Células Asesinas Naturales , Citometría de Flujo
4.
BMC Bioinformatics ; 23(1): 292, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35870905

RESUMEN

BACKGROUND: With the widespread availability of microarray technology for epigenetic research, methods for calling differentially methylated probes or differentially methylated regions have become effective tools to analyze this type of data. Furthermore, visualization is usually employed for quality check of results and for further insights. Expert knowledge is required to leverage capabilities of these methods. To overcome this limitation and make visualization in epigenetic research available to the public, we designed EpiVisR. RESULTS: The EpiVisR tool allows to select and visualize combinations of traits (i.e., concentrations of chemical compounds) and differentially methylated probes/regions. It supports various modes of enriched presentation to get the most knowledge out of existing data: (1) enriched Manhattan plot and enriched volcano plot for selection of probes, (2) trait-methylation plot for visualization of selected trait values against methylation values, (3) methylation profile plot for visualization of a selected range of probes against selected trait values as well as, (4) correlation profile plot for selection and visualization of further probes that are correlated to the selected probe. EpiVisR additionally allows exporting selected data to external tools for tasks such as network analysis. CONCLUSION: The key advantage of EpiVisR is the annotation of data in the enriched plots (and tied tables) as well as linking to external data sources for further integrated data analysis. Using the EpiVisR approach will allow users to integrate data from traits with epigenetic analyses that are connected by belonging to the same individuals. Merging data from various data sources among the same cohort and visualizing them will enable users to gain more insights from existing data.


Asunto(s)
Epigénesis Genética , Epigenoma , Metilación de ADN , Análisis de Datos , Epigenómica , Estudio de Asociación del Genoma Completo/métodos , Humanos
5.
Int J Cancer ; 151(11): 2031-2042, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054664

RESUMEN

Adaptive immune cells with regulatory function reportedly mediate immune escape in a variety of tumors. Little is known regarding the relevance of the most prominent regulatory cell populations, namely Foxp3+ T regulatory cells (Tregs) and CD19+IL-10+ B regulatory cells (Bregs), for neuroblastoma (NB) survival. After establishing a novel immunocompetent syngeneic NB mouse model where orthotopic tumors can be generated after intrarenal injection of NB975A cells, we studied the importance of Tregs and Bregs in Foxp3-DTR mice whose Tregs can be depleted by diphtheria toxin (DT) application as well as in CD19-specific IL-10 deficient mice that lack IL-10+ Bregs (CD19cre+/- × IL-10fl/fl mice). We observed Foxp3 Treg cells in tumors from wild type mice. On the contrary, Bregs or B cells were scarce. Specific depletion of Tregs in Foxp3-DTR mice resulted in an 85% reduction of tumor volume and weight compared to DT-treated wild type mice and untreated Foxp3-DTR mice. In contrast, NB tumor growth was not affected in CD19-specific IL-10 deficient mice. Similarly, mice lacking mature B cells (µMT mice) and CD19 deficient mice (CD19cre mice) showed no change in growth pattern of NB tumors. In Treg-depleted mice, reduced tumor growth was associated with an increased concentration of IFN-gamma, TNF-alpha, IL-4, IL-6, and IL-10 in isolated splenocytes. In summary, transient ablation of Tregs but not absence of Bregs hindered the growth of NB, strongly suggesting the therapeutic potential of targeting Tregs for this aggressive childhood tumor.


Asunto(s)
Linfocitos B Reguladores , Neuroblastoma , Animales , Antígenos CD19 , Linfocitos B Reguladores/metabolismo , Toxina Diftérica/metabolismo , Toxina Diftérica/farmacología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Linfocitos T Reguladores , Factor de Necrosis Tumoral alfa/metabolismo
6.
BMC Public Health ; 22(1): 863, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488325

RESUMEN

BACKGROUND: In the first years of their lives, children develop the cognitive, social and emotional skills that will provide the foundations for their lifelong health and achievements. To increase their life prospects and reduce the long-term effects of early aversive conditions, it is therefore crucial to understand the risk factors that negatively affect child development and the factors that are instead beneficial. In this study, we tested (i) the effects of different social and environmental stressors on maternal stress levels, (ii) the dynamic relationship between maternal stress and child behavior problems during development, and (iii) the potential promotive (i.e. main) or protective (i.e. buffering) effect of siblings on child behavior problems during development. METHODS: We used longitudinal data from 373 mother-child pairs (188 daughters, 185 sons) from pregnancy until 10 years of age. We assessed maternal stress and child behavior problems (internalizing and externalizing) with validated questionnaires, and then used linear mixed models, generalized linear mixed models and longitudinal cross-lagged models to analyze the data. RESULTS: Our results showed that higher maternal stress levels were predicted by socio-environmental stressors (i.e. the lack of sufficient social areas in the neighborhood). Moreover, prenatal maternal stress reliably predicted the occurrence of behavior problems during childhood. Finally, the presence of older siblings had a promotive function, by reducing the likelihood that children developed externalizing problems. CONCLUSIONS: Overall, our results confirm the negative effects that maternal stress during pregnancy may have on the offspring, and suggest an important main effect of older siblings in promoting a positive child development.


Asunto(s)
Trastornos de la Conducta Infantil , Problema de Conducta , Niño , Conducta Infantil , Trastornos de la Conducta Infantil/psicología , Femenino , Humanos , Madres/psicología , Embarazo , Problema de Conducta/psicología , Hermanos
7.
J Biol Chem ; 295(14): 4381-4382, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245902

RESUMEN

The PD-1 ligands PD-L1 and PD-L2 are commonly expressed on the surface of cells, where they regulate immune system activation. However, the specific role played by each ligand has been unclear. Using site-directed mutagenesis, surface plasmon resonance, and crystallography, Philips et al. explore the distinct features of PD-L2 and identify a specific evolutionary event linked to its appearance. This work provides a deeper understanding of how the immune system adapted to mammalian placental gestation and could be an important consideration in the development of new immune checkpoint therapies.


Asunto(s)
Antígeno B7-H1 , Euterios , Animales , Femenino , Ligandos , Embarazo , Proteína 2 Ligando de Muerte Celular Programada 1
8.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281280

RESUMEN

Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes between the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while they were increased in preeclampsia and unchanged in spontaneous abortions when compared to normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overexpression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation, while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The invasion and migration properties were affected at different degrees among the trophoblast cell lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflammation was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated, leads to trophoblast disadvantage that at least in part is mediated by NF-κB.


Asunto(s)
Complicaciones del Embarazo/metabolismo , Trofoblastos/metabolismo , Aborto Espontáneo/genética , Aborto Espontáneo/metabolismo , Aborto Espontáneo/patología , Adulto , Apoptosis , Estudios de Casos y Controles , Línea Celular , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Técnicas de Silenciamiento del Gen , Humanos , Técnicas In Vitro , Masculino , FN-kappa B/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Preeclampsia/patología , Embarazo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trofoblastos/patología , Regulación hacia Arriba , Proteína 1 de Unión a la Caja Y/antagonistas & inhibidores , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Adulto Joven
9.
Am J Med Genet B Neuropsychiatr Genet ; 186(4): 228-241, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170065

RESUMEN

Low prosocial behavior in childhood has been consistently linked to later psychopathology, with evidence supporting the influence of both genetic and environmental factors on its development. Although neonatal DNA methylation (DNAm) has been found to prospectively associate with a range of psychological traits in childhood, its potential role in prosocial development has yet to be investigated. This study investigated prospective associations between cord blood DNAm at birth and low prosocial behavior within and across four longitudinal birth cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. We examined (a) developmental trajectories of "chronic-low" versus "typical" prosocial behavior across childhood in a case-control design (N = 2,095), and (b) continuous "low prosocial" scores at comparable cross-cohort time-points (N = 2,121). Meta-analyses were performed to examine differentially methylated positions and regions. At the cohort-specific level, three CpGs were found to associate with chronic low prosocial behavior; however, none of these associations was replicated in another cohort. Meta-analysis revealed no epigenome-wide significant CpGs or regions. Overall, we found no evidence for associations between DNAm patterns at birth and low prosocial behavior across childhood. Findings highlight the importance of employing multi-cohort approaches to replicate epigenetic associations and reduce the risk of false positive discoveries.


Asunto(s)
Altruismo , Metilación de ADN/genética , Recién Nacido/psicología , Adolescente , Cohorte de Nacimiento , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Cordocentesis/métodos , Islas de CpG/genética , Epigénesis Genética/genética , Epigenoma/genética , Epigenómica/métodos , Femenino , Sangre Fetal/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Humanos , Recién Nacido/metabolismo , Masculino
10.
J Immunol ; 201(2): 325-334, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29987001

RESUMEN

Immune cells adapt their phenotypic and functional characteristics in response to the tissue microenvironment within which they traffic and reside. The fetomaternal interface, consisting of placental trophoblasts and the maternal decidua, is a highly specialized tissue with a unique and time-limited function: to nourish and support development of the semiallogeneic fetus and protect it from inflammatory or immune-mediated injury. It is therefore important to understand how immune cells within these tissues are educated and adapt to fulfill their biological functions. This review article focuses on the local regulatory mechanisms ensuring that both innate and adaptive immune cells appropriately support the early events of implantation and placental development through direct involvement in promoting immune tolerance of fetal alloantigens, suppressing inflammation, and remodeling of maternal uterine vessels to facilitate optimal placental function and fetal growth.


Asunto(s)
Microambiente Celular/inmunología , Desarrollo Fetal/inmunología , Feto/inmunología , Placentación/inmunología , Animales , Femenino , Humanos , Embarazo
11.
PLoS Genet ; 12(3): e1005907, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26977770

RESUMEN

Jacob, the protein encoded by the Nsmf gene, is involved in synapto-nuclear signaling and docks an N-Methyl-D-Aspartate receptor (NMDAR)-derived signalosome to nuclear target sites like the transcription factor cAMP-response-element-binding protein (CREB). Several reports indicate that mutations in NSMF are related to Kallmann syndrome (KS), a neurodevelopmental disorder characterized by idiopathic hypogonadotropic hypogonadism (IHH) associated with anosmia or hyposmia. It has also been reported that a protein knockdown results in migration deficits of Gonadotropin-releasing hormone (GnRH) positive neurons from the olfactory bulb to the hypothalamus during early neuronal development. Here we show that mice that are constitutively deficient for the Nsmf gene do not present phenotypic characteristics related to KS. Instead, these mice exhibit hippocampal dysplasia with a reduced number of synapses and simplification of dendrites, reduced hippocampal long-term potentiation (LTP) at CA1 synapses and deficits in hippocampus-dependent learning. Brain-derived neurotrophic factor (BDNF) activation of CREB-activated gene expression plays a documented role in hippocampal CA1 synapse and dendrite formation. We found that BDNF induces the nuclear translocation of Jacob in an NMDAR-dependent manner in early development, which results in increased phosphorylation of CREB and enhanced CREB-dependent Bdnf gene transcription. Nsmf knockout (ko) mice show reduced hippocampal Bdnf mRNA and protein levels as well as reduced pCREB levels during dendritogenesis. Moreover, BDNF application can rescue the morphological deficits in hippocampal pyramidal neurons devoid of Jacob. Taken together, the data suggest that the absence of Jacob in early development interrupts a positive feedback loop between BDNF signaling, subsequent nuclear import of Jacob, activation of CREB and enhanced Bdnf gene transcription, ultimately leading to hippocampal dysplasia.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Dendritas/metabolismo , Hipocampo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , ARN Mensajero/biosíntesis , Transducción de Señal , Sinapsis/genética , Sinapsis/metabolismo
12.
Blood ; 128(17): 2153-2164, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27589872

RESUMEN

Preeclampsia (PE) is a placenta-induced inflammatory disease associated with maternal and fetal morbidity and mortality. The mechanisms underlying PE remain enigmatic and delivery of the placenta is the only known remedy. PE is associated with coagulation and platelet activation and increased extracellular vesicle (EV) formation. However, thrombotic occlusion of the placental vascular bed is rarely observed and the mechanistic relevance of EV and platelet activation remains unknown. Here we show that EVs induce a thromboinflammatory response specifically in the placenta. Following EV injection, activated platelets accumulate particularly within the placental vascular bed. EVs cause adenosine triphosphate (ATP) release from platelets and inflammasome activation within trophoblast cells through purinergic signaling. Inflammasome activation in trophoblast cells triggers a PE-like phenotype, characterized by pregnancy failure, elevated blood pressure, increased plasma soluble fms-like tyrosine kinase 1, and renal dysfunction. Intriguingly, genetic inhibition of inflammasome activation specifically in the placenta, pharmacological inhibition of inflammasome or purinergic signaling, or genetic inhibition of maternal platelet activation abolishes the PE-like phenotype. Inflammasome activation in trophoblast cells of women with preeclampsia corroborates the translational relevance of these findings. These results strongly suggest that EVs cause placental sterile inflammation and PE through activation of maternal platelets and purinergic inflammasome activation in trophoblast cells, uncovering a novel thromboinflammatory mechanism at the maternal-embryonic interface.


Asunto(s)
Vesículas Extracelulares/patología , Inflamasomas/inmunología , Activación Plaquetaria/fisiología , Preeclampsia/fisiopatología , Trofoblastos/patología , Animales , Plaquetas/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Vesículas Extracelulares/inmunología , Femenino , Humanos , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Preeclampsia/inmunología , Preeclampsia/patología , Embarazo , Trofoblastos/inmunología
14.
Int J Cancer ; 138(8): 2030-42, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26595750

RESUMEN

Heme oxygenase (HO)-1 catalyzes the degradation of cytotoxic heme into biliverdin and blocks antitumor immune responses, thus protecting cancer against host defense. Whether this scenario also applies to neuroblastoma (NB), the most common extracranial solid childhood tumor, is not known. Here, we demonstrate for the first time a prognostic relevance of HO-1 expression in samples from NB patients and show that targeting of HO-1 prevents both cancer resistance against cellular stress and immune escape in the syngeneic NXS2 A/J mouse model of NB. High HO-1 RNA expression in NB tissues emerged as unfavorable prognostic marker, in particular for patients older than 18 months as indicated by univariate as well as multivariate survival probability analyses including disease stage and MYCN status. On the basis of this observation we aimed to target HO-1 by systemic as well as tumor-specific zinc protoporphyrin-mediated HO-1 suppression in a syngeneic immunocompetent NB mouse model. This resulted in 50% reduction of primary tumor growth and a suppression of spontaneous liver metastases. Importantly, HO-1 inhibition abrogated immune cell paralysis affecting CD4 and CD8 T-effector cells. This in turn reverted HO-1-dependent immune escape mechanisms in NB by increasing NB apoptosis and improved DC maturation. In summary, HO-1 emerges as a novel immune regulator in NB and emerges as a promising target for the development of therapeutic approaches.


Asunto(s)
Biomarcadores de Tumor/análisis , Hemo-Oxigenasa 1/inmunología , Neuroblastoma/inmunología , Escape del Tumor/inmunología , Animales , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Hemo-Oxigenasa 1/metabolismo , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Ratones , Neuroblastoma/enzimología , Neuroblastoma/patología , Pronóstico , Modelos de Riesgos Proporcionales , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Immunol ; 190(6): 2650-8, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23396945

RESUMEN

Normal pregnancy is characterized by an early expansion of regulatory T cells (Tregs), which is known to contribute to fetal tolerance. However, mechanisms and factors behind Treg expansion are not yet defined. Recently, we proposed that the pregnancy hormone human chorionic gonadotropin (hCG) efficiently attracts human Tregs to trophoblasts, favoring their accumulation locally. In this study, we hypothesized that hCG not only acts as a chemoattractant of Tregs but also plays a central role in pregnancy-induced immune tolerance. Virgin, normal pregnant, and abortion-prone female mice were treated either with 10 IU/ml hCG or PBS at days 0, 2, 4, and 6 of pregnancy. The hCG effect on Treg frequency and cytokine secretion was determined in Foxp3(gfp) females. hCG impact on Treg suppressive capacity was studied in vitro. In vivo, we investigated whether hCG enhances Treg suppressive capacity indirectly by modulating dendritic cell maturation in an established mouse model of disturbed fetal tolerance. Application of hCG increased Treg frequency in vivo and their suppressive activity in vitro. In females having spontaneous abortions, hCG provoked not only an augmentation of Treg numbers, but also normalized fetal abortion rates. hCG-generated Tregs were fully functional and could confer tolerance when adoptively transferred. hCG also retained dendritic cells in a tolerogenic state that is likely to contribute to both Treg expansion and prevention of abortion. Our results position hCG in a novel, so far unknown role as modulator of immune tolerance during pregnancy.


Asunto(s)
Gonadotropina Coriónica/fisiología , Tolerancia Inmunológica/fisiología , Proteínas Gestacionales/fisiología , Embarazo/inmunología , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Ratones Transgénicos
16.
Biol Reprod ; 91(5): 115, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25210132

RESUMEN

Pregnancy hides an immunological riddle combining two antagonistic characteristics of immunology: the existence of a tolerance that allows the gestation of a semiallogeneic fetus and proper protection against pathogens threatening the health of the immunocompromised mother. Despite the fundamental role that B cells play in orchestrating an immune response, their behavior in the context of pregnancy has been barely investigated. Here we demonstrate that numbers of pre/pro and immature B cells were progressively diminished in the bone marrow (BM) of pregnant mice, leading to a reduced influx of B cells in blood and spleen. Correspondingly, lower levels of B cell-activating factor of the TNF family were observed in serum of pregnant mice. In contrast to immature B cells, mature B cells were accumulated in the BM during pregnancy. Accordingly, higher numbers of mature B cells were observed in the lymph nodes draining the uterus as well as in the peritoneal cavity of pregnant mice, both tissues in close contact with the fetuses. Despite an increase in spleen size, pregnant mice showed lower numbers of splenic B cells, which was mirrored by lower numbers of immature and FO B cells. However, marginal zone B cells in the spleen increased during pregnancy. Additionally, serum IgM, IgA, and IgG3 titers were elevated in pregnant mice. Collectively, our data show how the B cell compartment adapts to the presence of the semiallogeneic fetus during gravidity.


Asunto(s)
Adaptación Fisiológica/inmunología , Linfocitos B/fisiología , Diferenciación Celular , Embarazo/inmunología , Animales , Linfocitos B/citología , Células de la Médula Ósea/inmunología , Diferenciación Celular/inmunología , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Recuento de Linfocitos , Ratones , Ratones Endogámicos C57BL , Embarazo/sangre , Bazo/citología , Bazo/inmunología
17.
Chem Biol Interact ; 395: 111011, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38653352

RESUMEN

Immune homeostasis is key to guarantee that the immune system can elicit effector functions against pathogens and at the same time raise tolerance towards other antigens. A disturbance of this delicate balance may underlie or at least trigger pathologies. Endocrine disrupting chemicals (EDCs) are increasingly recognized as risk factors for immune dysregulation. However, the immunotoxic potential of specific EDCs and their mixtures is still poorly understood. Thus, we aimed to investigate the effect of bisphenol A (BPA) and benzophenone-3 (BP-3), alone and in combination, on in vitro differentiation of T helper (TH)17 cells and regulatory T (Treg) cells. Naïve T cells were isolated from mouse lymphoid tissues and differentiated into the respective TH population in the presence of 0.001-10 µM BP-3 and/or 0.01-100 µM BPA. Cell viability, proliferation and the expression of TH lineage specific transcription factors and cytokines was measured by flow cytometry and CBA/ELISA. Moreover, the transcription of hormone receptors as direct targets of EDCs was quantified by RT-PCR. We found that the highest BPA concentration adversely affected TH cell viability and proliferation. Moreover, the general differentiation potential of both TH populations was not altered in the presence of both EDCs. However, EDC exposure modulated the emergence of TH17 and Treg cell intermediate states. While BPA and BP-3 promoted the development of TH1-like TH17 cells under TH17-differentiating conditions, TH2-like Treg cells occurred under Treg polarization. Interestingly, differential effects could be observed in mixtures of the two tested compounds compared with the individual compounds. Notably, estrogen receptor ß expression was decreased under TH17-differentiating conditions in the presence of BPA and BP-3 as mixture. In conclusion, our study provides solid evidence for both, the immune disruptive potential and the existence of cumulative effects of real nature EDC mixtures on T cell in vitro differentiation.


Asunto(s)
Compuestos de Bencidrilo , Benzofenonas , Diferenciación Celular , Fenoles , Linfocitos T Reguladores , Células Th17 , Fenoles/toxicidad , Fenoles/farmacología , Animales , Compuestos de Bencidrilo/toxicidad , Benzofenonas/farmacología , Benzofenonas/toxicidad , Diferenciación Celular/efectos de los fármacos , Ratones , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Células Th17/efectos de los fármacos , Células Th17/citología , Células Th17/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Proliferación Celular/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/farmacología , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/citología , Células Cultivadas
18.
Front Immunol ; 14: 1327960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38229911

RESUMEN

Background: There is a growing need for immunological assays to test toxic and modulatory effects of chemicals. The assays should be easy to use, reproducible and superior to cell line-based assays. We have therefore developed a comprehensive portfolio of assays based on primary human blood cells that are suitable for testing chemical effects. Methods: The flow cytometry-based assays were designed to target a wide range of human peripheral blood mononuclear cells and whole blood, including T cells, NK cells, B cells, basophils and innate-like T cells such as γδT, MAIT and NKT cells. We have selected a set of activation markers for each immune cell, e.g: CD154 (T cells), CD137, CD107a (NK cells), CD63 (basophils), CD69, CD83 (B cells), CD69, IFN-γ (MAIT cells) and we selected cell specific stimuli: aCD3 antibodies (T cells); E. coli and cytokines IL-12/15/18 (MAIT cells); CpG ODN2006, R848 or aCD40 antibodies (B cells), fMLP or aFcϵR1 (basophils) or K562 cells (NK cells). Results: By selecting immune cell-specific markers and cell-specific stimuli, we were able to induce particular immune responses from the targeted immune cells. For example, the response to stimulation with anti-CD3 antibodies was in 36.8% of CD107a+CD8+ cells. Cytokine stimulation induced the production of IFN-γ in 30% of MAIT cells. After stimulation with E. coli, around 50% of MAIT cells produced TNF. About 40% of basophils responded to aFcƐR1 stimulation. Similar activation ranges were achieved in K562-stimulated NK cells. Conclusion: Our test portfolio covers the most relevant immune cells present in human blood, providing a solid basis for in vitro toxicity and immunomodulatory testing of chemicals. By using human blood, the natural composition of cells found in the blood can be determined and the effects of chemicals can be detected at the cellular level.


Asunto(s)
Escherichia coli , Leucocitos Mononucleares , Humanos , Citometría de Flujo , Citocinas/farmacología , Biomarcadores , Células K562 , Inmunoensayo , Técnicas In Vitro
19.
Chemosphere ; 336: 139204, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315852

RESUMEN

In the last decades, per- and poly-fluoroalkyl substances (PFAS), widely used industrial chemicals, have been in the center of attention because of their omnipotent presence in water and soils worldwide. Although efforts have been made to substitute long-chain PFAS towards safer alternatives, their persistence in humans still leads to exposure to these compounds. PFAS immunotoxicity is poorly understood as no comprehensive analyses on certain immune cell subtypes exist. Furthermore, mainly single entities and not PFAS mixtures have been assessed. In the present study we aimed to investigate the effect of PFAS (short-chain, long-chain and a mixture of both) on the in vitro activation of primary human immune cells. Our results show the ability of PFAS to reduce T cells activation. In particular, exposure to PFAS affected T helper cells, cytotoxic T cells, Natural Killer T cells, and Mucosal associated invariant T (MAIT) cells, as assessed by multi-parameter flow cytometry. Furthermore, the exposure to PFAS reduced the expression of several genes involved in MAIT cells activation, including chemokine receptors, and typical proteins of MAIT cells, such as GZMB, IFNG and TNFSF15 and transcription factors. These changes were mainly induced by the mixture of both short- and long-chain PFAS. In addition, PFAS were able to reduce basophil activation induced by anti-FcεR1α, as assessed by the decreased expression of CD63. Our data clearly show that the exposure of immune cells to a mixture of PFAS at concentrations mimicking real-life human exposure resulted in reduced cell activation and functional changes of primary innate and adaptive human immune cells.


Asunto(s)
Fluorocarburos , Células T Invariantes Asociadas a Mucosa , Humanos , Basófilos , Células T Invariantes Asociadas a Mucosa/metabolismo , Citometría de Flujo , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
20.
Sci Total Environ ; 905: 167034, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709081

RESUMEN

The past decade has been characterized by increased awareness and de-stigmatization of mental health issues, in particular the most common neuropsychiatric disorders depression and anxiety. Further, with growing understanding of neurodevelopmental disorders such as attention deficit and hyperactivity disorder and autism spectrum disorder, the number of diagnosed patients has increased. The pathogenesis of these behavioral disorders is multifactorial and early-life exposure to environmental chemicals has been proposed to be a relevant risk factor that might mediate these effects by disturbances on the gut-brain-axis. However, for glyphosate, the most widely used pesticide worldwide, there are only limited and inconsistent findings that link chronic low-dose exposure in particular during early life to neurobehavioral disorders. Here, we explored the impact of maternal oral glyphosate exposure (0.5 and 50 mg/kg body weight/day) during pregnancy and the lactational period on offspring's behavior, brain gene expression and gut microbiota using a cross-generational mouse model. Behavioral analyses revealed a depression- and anxiety-like behavior as well as social deficits most notably in adult female offspring of glyphosate-exposed dams. Furthermore, the expression of tryptophan hydroxylase 2, an enzyme discussed to be linked to behavioral problems, was reduced in the hippocampus of female offspring and correlated to a glyphosate-induced DNA hypermethylation of the gene. Moreover, maternal glyphosate exposure significantly altered the gut microbiota in the female offspring including a decreased abundance of Akkermansia and increased abundance of Alistipes and Blautia, bacteria involved in tryptophan metabolism and associated with depression- and anxiety-like disorders. Our results suggest that glyphosate might influence the gut-brain axis crosstalk following in-utero and lactational exposure. This study underlines the importance of understanding the impact of exposure to pesticides on the gut-brain axis and further emphasizes the need for microbiome analyses to be compulsorily included in health risk assessments of pesticides.


Asunto(s)
Trastorno del Espectro Autista , Plaguicidas , Humanos , Adulto , Embarazo , Animales , Ratones , Femenino , Exposición Materna/efectos adversos , Depresión/inducido químicamente , Eje Cerebro-Intestino , Ansiedad/inducido químicamente , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA