Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 22(7): e51678, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33987949

RESUMEN

Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor ß-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.


Asunto(s)
Mycobacterium tuberculosis , Pez Cebra , Animales , Galactanos , Galectinas/genética , Ratones
2.
J Nanobiotechnology ; 21(1): 369, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817142

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Macrófagos , Tuberculosis/tratamiento farmacológico , Rifampin/farmacología , Hierro
3.
Int J Med Microbiol ; 312(7): 151569, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36274382

RESUMEN

Tuberculosis (TB) induced by Mycobacterium tuberculosis (M. tuberculosis) infection remains a global most deadly infectious disease. While development of more effective TB vaccines and therapeutics relies on identifications of true biomarkers designating an immune protection against M. tuberculosis infection, exact protective immune components against M. tuberculosis infection remain largely unidentified. We previously found that severe TB induced remarkable up-regulation of interferon regulatory factor 7 (IRF7) and IRF7-related gene signatures, implicating that some unknown downstream molecules in IRF7 signaling cascades may determine the M. tuberculosis infection outcomes and serve as a protective immune component against M. tuberculosis infection. Indeed, here, we observe that genetic ablation of IRF7 leads to more severe lung pathology, increased M. tuberculosis burdens, impaired differentiation of effector/memory T subsets, and extensively elevated expression of pro-inflammatory cytokines in lungs. Importantly, IRF7 is vital for sustaining expression of PD-1/PD-L1 and PD-1/PD-L1-modulated miRNA-31. Moreover, interventions of miRNA-31 expressions via administration of miRNA-31 agomir reduces lung pathology and bacilli burdens via inducing up-regulation of gene sets involved in biological processes of defense response or cellular and chemical homeostasis in lungs. Thus, this study uncovers previously unrecognized importance and mechanisms of IRF7-mediated miRNA-31 as a protective immune component against M. tuberculosis infection.


Asunto(s)
MicroARNs , Mycobacterium tuberculosis , Tuberculosis , Humanos , Antígeno B7-H1 , Factor 7 Regulador del Interferón/genética , Receptor de Muerte Celular Programada 1 , Tuberculosis/microbiología , MicroARNs/genética
4.
J Nanobiotechnology ; 20(1): 36, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033108

RESUMEN

Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a top killer among infectious diseases. While Bacillus Calmette-Guerin (BCG) is the sole TB vaccine, the clumped-clustered features of BCG in intradermal immunization appear to limit both the BCG protection efficacy and the BCG vaccination safety. We hypothesize that engineering of clumped-clustered BCG into nanoscale particles would improve safety and also facilitate the antigen-presenting-cell (APC)'s uptake and the following processing/presentation for better anti-TB protective immunity. Here, we engineered BCG protoplasts into nanoscale membraned BCG particles, termed as "BCG-Nanocage" to enhance the anti-TB vaccination efficiency and safety. BCG-Nanocage could readily be ingested/taken by APC macrophages selectively; BCG-Nanocage-ingested macrophages exhibited better viability and developed similar antimicrobial responses with BCG-infected macrophages. BCG-Nanocage, like live BCG bacilli, exhibited the robust capability to activate and expand innate-like T effector cell populations of Vγ2+ T, CD4+ T and CD8+ T cells of rhesus macaques in the ex vivo PBMC culture. BCG-Nanocage immunization of rhesus macaques elicited similar or stronger memory-like immune responses of Vγ2Vδ2 T cells, as well as Vγ2Vδ2 T and CD4+/CD8+ T effectors compared to live BCG vaccination. BCG-Nanocage- immunized macaques developed rapidly-sustained pulmonary responses of Vγ2Vδ2 T cells upon Mtb challenge. Furthermore, BCG- and BCG-Nanocage- immunized macaques, but not saline controls, exhibited undetectable Mtb infection loads or TB lesions in the Mtb-challenged lung lobe and hilar lymph node at endpoint after challenge. Thus, the current study well justifies a large pre-clinical investigation to assess BCG-Nanocage for safe and efficacious anti-TB vaccination, which is expected to further develop novel vaccines or adjuvants.


Asunto(s)
Vacuna BCG , Linfocitos T CD8-positivos/inmunología , Mycobacterium tuberculosis/inmunología , Nanoestructuras/química , Tuberculosis/inmunología , Animales , Vacuna BCG/química , Vacuna BCG/inmunología , Células Cultivadas , Femenino , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Macaca mulatta , Masculino
5.
Angew Chem Int Ed Engl ; 59(8): 3226-3234, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31756258

RESUMEN

Pathogenesis hallmarks for tuberculosis (TB) are the Mycobacterium tuberculosis (Mtb) escape from phagolysosomal destruction and limited drug delivery into infected cells. Several nanomaterials can be entrapped in lysosomes, but the development of functional nanomaterials to promote phagolysosomal Mtb clearance remains a big challenge. Here, we report on the bactericidal effects of selenium nanoparticles (Se NPs) against Mtb and further introduce a novel nanomaterial-assisted anti-TB strategy manipulating Ison@Man-Se NPs for synergistic drug-induced and phagolysosomal destruction of Mtb. Ison@Man-Se NPs preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Surprisingly, Ison@Man-Se/Man-Se NPs further promoted the fusion of Mtb into lysosomes for synergistic lysosomal and Isoniazid destruction of Mtb. Concurrently, Ison@Man-Se/Man-Se NPs also induced autophagy sequestration of Mtb, evolving into lysosome-associated autophagosomal Mtb degradation linked to ROS-mitochondrial and PI3K/Akt/mTOR signaling pathways. This novel nanomaterial-assisted anti-TB strategy manipulating antimicrobial immunity and Mtb clearance may potentially serve in more effective therapeutics against TB and drug-resistant TB.


Asunto(s)
Antibacterianos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Isoniazida/química , Macrófagos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Nanopartículas/química , Selenio/química , Tuberculosis/tratamiento farmacológico , Humanos , Tuberculosis/patología
6.
Proc Natl Acad Sci U S A ; 112(29): E3883-92, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26150504

RESUMEN

Molecular mechanisms for T-cell immune responses modulated by T cell-inhibitory molecules during tuberculosis (TB) infection remain unclear. Here, we show that active human TB infection up-regulates CD244 and CD244 signaling-associated molecules in CD8(+) T cells and that blockade of CD244 signaling enhances production of IFN-γ and TNF-α. CD244 expression/signaling in TB correlates with high levels of a long noncoding RNA (lncRNA)-BC050410 [named as lncRNA-AS-GSTT1(1-72) or lncRNA-CD244] in the CD244(+)CD8(+) T-cell subpopulation. CD244 signaling drives lncRNA-CD244 expression via sustaining a permissive chromatin state in the lncRNA-CD244 locus. By recruiting polycomb protein enhancer of zeste homolog 2 (EZH2) to infg/tnfa promoters, lncRNA-CD244 mediates H3K27 trimethylation at infg/tnfa loci toward repressive chromatin states and inhibits IFN-γ/TNF-α expression in CD8(+) T cells. Such inhibition can be reversed by knock down of lncRNA-CD244. Interestingly, adoptive transfer of lncRNA-CD244-depressed CD8(+) T cells to Mycobacterium tuberculosis (MTB)-infected mice reduced MTB infection and TB pathology compared with lncRNA-CD244-expressed controls. Thus, this work uncovers previously unidentified mechanisms in which T cell-inhibitory signaling and lncRNAs regulate T-cell responses and host defense against TB infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epigénesis Genética , Inmunidad , ARN Largo no Codificante/genética , Transducción de Señal , Tuberculosis/inmunología , Traslado Adoptivo , Animales , Anticuerpos Monoclonales/farmacología , Antígenos CD , Apoptosis/efectos de los fármacos , Apoptosis/genética , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Cromatina/metabolismo , Biología Computacional , Secuencia Conservada , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética/efectos de los fármacos , Evolución Molecular , Técnicas de Silenciamiento del Gen , Genoma Humano , Células HEK293 , Humanos , Inmunidad/efectos de los fármacos , Inmunidad/genética , Interferón gamma/biosíntesis , Interferón gamma/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Biológicos , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Receptores Inmunológicos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Regulación hacia Arriba/efectos de los fármacos
7.
Microb Pathog ; 111: 402-409, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28826765

RESUMEN

Since 2013, a novel Influenza A (H7N9) virus strain has continued to circulate within poultry and causing human disease. Influenza A (H7N9) virus results in two types of infection: mild and severe. The different results of clinical findings may be related with host susceptibility and characteristics of the virus itself. In order to investigate potential pathogenesis of Influenza A (H7N9) virus, we performed pathogenecity and cytokines analysis of two isolates, A/Guangdong/6/2013 H7N9 virus (GD-6) from a patient with a mild infection, and A/Guangdong/7/2013 H7N9 virus (GD-7) from a patient with a fatal infection. We found that GD-7 replicated to higher levels than GD-6 in human peripheral blood mononuclear cells (PBMCs), lung tissues, and mice. Furthermore, GD-7 infection resulted in more severe lung damage in mice lung tissues than GD-6 infection. GD-7 elicited higher levels of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) than GD-6 did. In conclusion, GD-7 was more pathogenic and induced higher levels of proinflammatory cytokines than GD-6 did.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Gripe Humana/mortalidad , Gripe Humana/patología , Interleucina-6/genética , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Factor de Necrosis Tumoral alfa/genética , Virulencia , Replicación Viral
8.
PLoS Pathog ; 10(10): e1004426, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25329476

RESUMEN

Mycobacterium tuberculosis infection is associated with a spectrum of clinical outcomes, from long-term latent infection to different manifestations of progressive disease. Pro-inflammatory pathways, such as those controlled by IL-1ß, have the contrasting potential both to prevent disease by restricting bacterial replication, and to promote disease by inflicting tissue damage. Thus, the ultimate contribution of individual inflammatory pathways to the outcome of M. tuberculosis infection remains ambiguous. In this study, we identified a naturally-occurring polymorphism in the human IL1B promoter region, which alters the association of the C/EBPß and PU.1 transcription factors and controls Mtb-induced IL-1ß production. The high-IL-1ß expressing genotype was associated with the development of active tuberculosis, the severity of pulmonary disease and poor treatment outcome in TB patients. Higher IL-1ß expression did not suppress the activity of IFN-γ-producing T cells, but instead correlated with neutrophil accumulation in the lung. These observations support a specific role for IL-1ß and granulocytic inflammation as a driver of TB disease progression in humans, and suggest novel strategies for the prevention and treatment of tuberculosis.


Asunto(s)
Alelos , Proteína beta Potenciadora de Unión a CCAAT/genética , Susceptibilidad a Enfermedades/microbiología , Interleucina-1beta/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Tuberculosis/microbiología , Línea Celular , Humanos , Interferón gamma/metabolismo , Pulmón/microbiología
9.
PLoS Pathog ; 9(8): e1003501, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23966854

RESUMEN

Dominant Vγ2Vδ2 T-cell subset exist only in primates, and recognize phosphoantigen from selected pathogens including M. tuberculosis(Mtb). In vivo function of Vγ2Vδ2 T cells in tuberculosis remains unknown. We conducted mechanistic studies to determine whether earlier expansion/differentiation of Vγ2Vδ2 T cells during Mtb infection could increase immune resistance to tuberculosis in macaques. Phosphoantigen/IL-2 administration specifically induced major expansion and pulmonary trafficking/accumulation of phosphoantigen-specific Vγ2Vδ2 T cells, significantly reduced Mtb burdens and attenuated tuberculosis lesions in lung tissues compared to saline/BSA or IL-2 controls. Expanded Vγ2Vδ2 T cells differentiated into multifunctional effector subpopulations capable of producing anti-TB cytokines IFNγ, perforin and granulysin, and co-producing perforin/granulysin in lung tissue. Mechanistically, perforin/granulysin-producing Vγ2Vδ2 T cells limited intracellular Mtb growth, and macaque granulysin had Mtb-bactericidal effect, and inhibited intracellular Mtb in presence of perforin. Furthermore, phosphoantigen/IL2-expanded Vγ2Vδ2 T effector cells produced IL-12, and their expansion/differentiation led to enhanced pulmonary responses of peptide-specific CD4+/CD8+ Th1-like cells. These results provide first in vivo evidence implicating that early expansion/differentiation of Vγ2Vδ2 T effector cells during Mtb infection increases resistance to tuberculosis. Thus, data support a rationale for conducting further studies of the γδ T-cell-targeted treatment of established TB, which might ultimately help explore single or adjunctive phosphoantigen expansion of Vγ2Vδ2 T-cell subset as intervention of MDR-tuberculosis or HIV-related tuberculosis.


Asunto(s)
Interleucina-2/administración & dosificación , Pulmón/inmunología , Macaca fascicularis/microbiología , Mycobacterium tuberculosis/fisiología , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/citología , Tuberculosis/prevención & control , Animales , Lavado Broncoalveolar , Diferenciación Celular/efectos de los fármacos , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Interleucina-2/farmacología , Pulmón/metabolismo , Pulmón/microbiología , Macaca fascicularis/metabolismo , Linfocitos T/inmunología , Linfocitos T/microbiología , Tuberculosis/inmunología , Tuberculosis/microbiología
10.
Appl Microbiol Biotechnol ; 99(22): 9685-98, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26219500

RESUMEN

Severe dengue is more likely found during secondary heterologous dengue virus (DENV) infection or primary infection of infants born to dengue-immune mothers and led to the hypothesis of antibody-dependent enhancement (ADE). It has been reported that pre-membrane (prM)-reactive antibodies do not efficiently neutralize DENV infection but instead potently promote ADE infection. Meanwhile, these enhancing anti-prM antibodies mainly react with the precursor (pr) peptide. To evaluate the effect of pr gene substitution on neutralization and ADE of DENV infection, a novel chimeric dengue virus (JEVpr/DENV2) was rationally constructed by replacing the DENV pr gene with Japanese encephalitis virus (JEV) pr gene, based on the full-length infectious complementary DNA (cDNA) clone of DENV2 ZS01/01. We found that chimeric JEVpr/DENV2 showed reduced virulence and good immunogenicity. In addition, anti-JEVpr/DENV2 sera showed broad cross-reactivity and efficient neutralizing activity with all four DENV serotypes and immature DENV2 (ImDENV2). Most importantly, compared with anti-DENV2 sera, anti-JEVpr/DENV2 sera showed significantly reduced enhancing activity of DENV infection in K562 cells. These results suggest that the ADE activities could be reduced by replacing the DENV pr gene with JEV pr gene. These findings may help us better understand the pathogenesis of DENV infection and provide a reference for the development of a vaccine against DENV.


Asunto(s)
Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Virus del Dengue/genética , Virus del Dengue/inmunología , Virus de la Encefalitis Japonesa (Subgrupo)/genética , Genética Inversa , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Virulencia
11.
Appl Microbiol Biotechnol ; 99(14): 5917-27, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25822571

RESUMEN

Dengue vaccine development is considered a global public health priority, but the antibody-dependent enhancement (ADE) issues have critically restricted vaccine development. Recent findings have demonstrated that pre-membrane (prM) protein was involved in dengue virus (DENV) infection enhancement. Although the importance of prM antibodies have been well characterized, only a few epitopes in DENV prM protein have ever been identified. In this study, we screened five potential linear epitopes located at positions pr1 (1-16aa), pr3 (13-28aa), pr4 (19-34aa), pr9 (49-64aa), and pr10 (55-70aa) in pr protein using peptide scanning and comprehensive bioinformatics analysis. Then, we found that only pr4 (19-34aa) could elicit high-titer antibodies in Balb/c mice, and this epitope could react with sera from DENV2-infected patients, suggesting that specific antibodies against epitope peptide pr4 were elicited in both DENV-infected mice and human. In addition, our data demonstrated that anti-pr4 sera showed limited neutralizing activity but significant ADE activity toward standard DENV serotypes and imDENV. Hence, it seems responsible to hypothesize that anti-pr4 serum was infection-enhancing antibody and pr4 was infection-enhancing epitope. In conclusion, we characterized a novel infection-enhancing epitope on dengue pr protein, a finding that may provide new insight into the pathogenesis of DENV infection and contribute to dengue vaccine design.


Asunto(s)
Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Mapeo Epitopo , Epítopos de Linfocito B/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Línea Celular , Humanos , Ratones Endogámicos BALB C
12.
PLoS Pathog ; 8(11): e1002984, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144609

RESUMEN

T-cell immune responses modulated by T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) during Mycobacterium tuberculosis (Mtb) infection in humans remain poorly understood. Here, we found that active TB patients exhibited increases in numbers of Tim-3-expressing CD4(+) and CD8(+) T cells, which preferentially displayed polarized effector memory phenotypes. Consistent with effector phenotypes, Tim-3(+)CD4(+) and Tim-3(+)CD8(+) T-cell subsets showed greater effector functions for producing Th1/Th22 cytokines and CTL effector molecules than Tim-3(-) counterparts, and Tim-3-expressing T cells more apparently limited intracellular Mtb replication in macrophages. The increased effector functions for Tim-3-expressing T cells consisted with cellular activation signaling as Tim-3(+)CD4(+) and Tim-3(+)CD8(+) T-cell subsets expressed much higher levels of phosphorylated signaling molecules p38, stat3, stat5, and Erk1/2 than Tim-3- controls. Mechanistic experiments showed that siRNA silencing of Tim-3 or soluble Tim-3 treatment interfering with membrane Tim-3-ligand interaction reduced de novo production of IFN-γ and TNF-α by Tim-3-expressing T cells. Furthermore, stimulation of Tim-3 signaling pathways by antibody cross-linking of membrane Tim-3 augmented effector function of IFN-γ production by CD4(+) and CD8(+) T cells, suggesting that Tim-3 signaling helped to drive stronger effector functions in active TB patients. This study therefore uncovered a previously unknown mechanism for T-cell immune responses regulated by Tim-3, and findings may have implications for potential immune intervention in TB.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Regulación de la Expresión Génica/inmunología , Memoria Inmunológica , Proteínas de la Membrana/inmunología , Células TH1/inmunología , Tuberculosis/inmunología , Femenino , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Interferón gamma/inmunología , Activación de Linfocitos/inmunología , Masculino , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/inmunología
13.
J Immunol ; 188(9): 4278-88, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22474020

RESUMEN

The possibility that simultaneous expansion of T regulatory cells (Treg) and T effector cells early postinfection can confer some immunological benefits has not been studied. In this study, we tested the hypothesis that early, simultaneous cytokine expansion of Treg and T effector cells in a tissue infection site can allow these T cell populations to act in concert to control tissue inflammation/damage while containing infection. IL-2 treatments early after Mycobacterium tuberculosis infection of macaques induced simultaneous expansion of CD4(+)CD25(+)Foxp3(+) Treg, CD8(+)CD25(+)Foxp3(+) T cells, and CD4(+) T effector/CD8(+) T effector/Vγ2Vδ2 T effector populations producing anti-M. tuberculosis cytokines IFN-γ and perforin, and conferred resistance to severe TB inflammation and lesions. IL-2-expanded Foxp3(+) Treg readily accumulated in pulmonary compartment, but despite this, rapid pulmonary trafficking/accumulation of IL-2-activated T effector populations still occurred. Such simultaneous recruitments of IL-2-expanded Treg and T effector populations to pulmonary compartment during M. tuberculosis infection correlated with IL-2-induced resistance to TB lesions without causing Treg-associated increases in M. tuberculosis burdens. In vivo depletion of IL-2-expanded CD4(+)Foxp3(+) Treg and CD4(+) T effectors during IL-2 treatment of M. tuberculosis-infected macaques significantly reduced IL-2-induced resistance to TB lesions, suggesting that IL-2-expanded CD4(+) T effector cells and Treg contributed to anti-TB immunity. Thus, IL-2 can simultaneously activate and expand T effector cells and Foxp3(+) Treg populations and confer resistance to severe TB without enhancing M. tuberculosis infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Celular , Interleucina-2/inmunología , Mycobacterium tuberculosis/inmunología , Linfocitos T Reguladores/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Factores de Transcripción Forkhead/inmunología , Interferón gamma/inmunología , Macaca fascicularis , Perforina/inmunología
14.
Front Oncol ; 14: 1393687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894868

RESUMEN

Objectives: To avoid the oncologic risks of ipsilateral regional flaps, this study aimed to explore the feasibility and clinical outcomes of the contralateral-based facial artery myomucosal island flap (C-FAMMIF) for oral T2-T3 oncologic defects reconstruction. Methods: A study of flap anatomy was conducted on 7 cadaver samples and a cohort of 24 patients who received C-FAMMIF reconstruction after malignancy resection were retrospectively researched. A balanced anterolateral thigh flap (ALT) group of 47 patients was extracted as control group using propensity score matching method. Progression-free survival (PFS), functional outcomes, and donor site complications were assessed. Results: Consistent blood supply and drainage through facial artery and vein with median maximum pedicle length of 106 mm supported contralateral reconstruction. The superficial vein drainage pattern indicated safer flap harvest at contralateral neck under circumstances of ipsilateral neck dissections. The pedicle and marginal facial nerve formed three anatomical patterns. The surgical management of each was described. Patients with ipsilateral pN+ neck accounted for 41.7% and 40.4% in the C-FAMMIF and ALT group, respectively. The 2-year PFS rate between the C-FAMMIF and ALT groups was not significantly different (88.2% in C-FAMMIF group and 84.6% in ALT group, respectively, p = 0.6358). Promising recoveries were observed for swallowing function and tactile sensation. The donor sites healed upon primary closure without trismus or permanent facial palsy. Conclusion: Our findings suggested that C-FAMMIF is feasible and safe for T2-T3 oral oncologic defect reconstruction in patients with ipsilateral cN+ neck.

15.
BMC Immunol ; 14: 37, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23927441

RESUMEN

BACKGROUND: Host genetic variations may contribute to disease susceptibility of influenza. IL-1A and IL-1B are important inflammatory cytokines that mediate the inflammation and initiate the immune response against virus infection. In this study, we investigated the relationship between single-nucleotide polymorphisms (SNPs) of Interleukin-1A (IL-1A) and Interleukin-1B (IL-1B) and the susceptibility to 2009 pandemic A/H1N1 influenza (A(H1N1)pdm09). 167 patients whom were confirmed with A(H1N1)pdm09 and 192 healthy controls were included in this study. Four SNPs (rs1304037, rs16347, rs17561, rs2071373) in IL1A gene and three SNPs (rs1143623, rs3917345, rs1143627) in IL1B gene were genotyped by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry platform, and the associations of the genetic variants of IL-1 with susceptibility to A(H1N1)pdm09 were then assessed. RESULTS: The polymorphisms of rs17561 in IL1A gene and rs1143627 in IL1B gene were found to be associated with susceptibility to A(H1N1)pdm09 with P values of 0.003 (OR 2.08, 95% CI 1.27-3.41) and 0.002 (OR 1.62 , 95% CI 1.20-2.18), respectively. However, no significant difference in allelic frequency was observed for other SNPs between cases and controls. CONCLUSIONS: This study provides a new insight into pathogenesis of A(H1N1)pdm09, suggesting that genetic variants of IL-1A and IL-1B may exert a substantial impact on the susceptibility of A(H1N1)pdm09 virus infection.


Asunto(s)
Predisposición Genética a la Enfermedad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Gripe Humana/genética , Interleucina-1alfa/genética , Interleucina-1beta/genética , Polimorfismo de Nucleótido Simple/genética , Femenino , Frecuencia de los Genes/genética , Técnicas de Genotipaje , Humanos , Gripe Humana/virología , Masculino , Pandemias , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
16.
BMC Microbiol ; 13: 194, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23987307

RESUMEN

BACKGROUND: Dengue virus (DENV) infection is the most important arthropod- borne viral disease in human, but antiviral therapy and approved vaccines remain unavailable due to antibody-dependent enhancement (ADE) phenomenon. Many studies showed that pre-membrane (prM)-specific antibodies do not efficiently neutralize DENV infection but potently promote ADE infection. However, most of the binding epitopes of these antibodies remain unknown. RESULTS: In the present study, we characterized a DENV cross-reactive monoclonal antibody (mAb), 4D10, that neutralized poorly but potently enhanced infection of four standard DENV serotypes and immature DENV (imDENV) over a broad range of concentration. In addition, the epitope of 4D10 was successfully mapped to amino acid residues 14 to18 of DENV1-4 prM protein using a phage-displayed peptide library and comprehensive bioinformatics analysis. We found that the epitope was DENV serocomplex cross-reactive and showed to be highly immunogenic in Balb/c mice. Furthermore, antibody against epitope peptide PL10, like 4D10, showed broad cross-reactivity and weak neutralizing activtity with four standard DENV serotypes and imDENV but significantly promoted ADE infection. These results suggested 4D10 and anti-PL10 sera were infection-enhancing antibodies and PL10 was infection-enhancing epitope. CONCLUSIONS: We mapped the epitope of 4D10 to amino acid residues 14 to18 of DENV1-4 prM and found that this epitope was infection-enhancing. These findings may provide significant implications for future vaccine design and facilitate understanding the pathogenesis of DENV infection.


Asunto(s)
Anticuerpos Bloqueadores/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Virus del Dengue/inmunología , Epítopos/inmunología , Proteínas del Envoltorio Viral/inmunología , Adulto , Animales , Biología Computacional , Reacciones Cruzadas , Dengue , Mapeo Epitopo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Biblioteca de Péptidos
17.
Int Immunol ; 24(4): 207-18, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22298881

RESUMEN

Immunopathogenesis of dengue virus (DEN) infection remains poorly studied. Identification and characterization of human CD8(+) T-cell epitopes on DEN are necessary for a better understanding of the immunopathogenesis of dengue infection and would facilitate the development of immunotherapy and vaccines to protect from dengue infection. Here, we identified two new HLA-A*0201-restricted CD8(+) T-cell epitopes, DEN-4 NS1(990)(-998) and DEN-4 NS1(997)(-1005) that are conserved in three or four major DEN serotypes, respectively. Unexpectedly, we found that immunization of HLA-A*0201 transgenic mice with DEN-4 NS1(990)(-998) or DEN-4 NS1(997)(-1005) epitope peptide induced de novo synthesis of tumor necrosis factor (TNF)-α and IFN-γ, two important pro-inflammatory molecules that are hard to be detected directly without in vitro antigenic re-stimulation. Importantly, we demonstrated that CD8(+) T cells specifically activated by DEN-4 NS1(990)(-998) or DEN-4 NS1(997)(-1005) epitope peptide induced de novo synthesis of perforin. Furthermore, we observed that DEN-4 NS1(990)(-998) or DEN-4 NS1(997)(-1005)-specific CD8(+) T cells capable of producing large amounts of perforin, TNF-α and IFN-γ preferentially displayed CD27(+)CD45RA(-), but not CD27(-)CD45RA(+), phenotypes. This study, therefore, suggested the importance of synergistic effects of pro-inflammatory cytokines and cytotoxic molecules which were produced by dengue-specific CD8(+) T cells in immunopathogenesis or anti-dengue immunity during dengue infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus del Dengue/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/inmunología , Proteínas no Estructurales Virales/inmunología , Animales , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/virología , Dengue/inmunología , Interferón gamma/biosíntesis , Lectinas Tipo C/análisis , Antígenos Comunes de Leucocito , Ratones , Ratones Transgénicos , Perforina/biosíntesis , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/análisis , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
18.
J Immunol ; 187(1): 190-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632708

RESUMEN

The role of IL-22-producing CD4(+) T cells in intracellular pathogen infections is poorly characterized. IL-22-producing CD4(+) T cells may express some effector molecules on the membrane, and therefore synergize or contribute to antimicrobial effector function. This hypothesis cannot be tested by conventional approaches manipulating a single IL-22 cytokine at genetic and protein levels, and IL-22(+) T cells cannot be purified for evaluation due to secretion nature of cytokines. In this study, we surprisingly found that upon activation, CD4(+) T cells in Mycobacterium tuberculosis-infected macaques or humans could evolve into T effector cells bearing membrane-bound IL-22 after de novo IL-22 production. Membrane-bound IL-22(+) CD4(+) T effector cells appeared to mature in vivo and sustain membrane distribution in highly inflammatory environments during active M. tuberculosis infection. Near-field scanning optical microscopy/quantum dot-based nanoscale molecular imaging revealed that membrane-bound IL-22, like CD3, distributed in membrane and engaged as ∼100-200 nm nanoclusters or ∼300-600 nm nanodomains for potential interaction with IL-22R. Importantly, purified membrane-bound IL-22(+) CD4(+) T cells inhibited intracellular M. tuberculosis replication in macrophages. Our findings suggest that IL-22-producing T cells can evolve to retain IL-22 on membrane for prolonged IL-22 t(1/2) and to exert efficient cell-cell interaction for anti-M. tuberculosis effector function.


Asunto(s)
Antibacterianos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Interleucinas/metabolismo , Proteínas de la Membrana/metabolismo , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/prevención & control , Animales , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Linfocitos T CD4-Positivos/metabolismo , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Mediadores de Inflamación/fisiología , Interleucinas/biosíntesis , Líquido Intracelular/inmunología , Líquido Intracelular/metabolismo , Líquido Intracelular/microbiología , Activación de Linfocitos/inmunología , Macaca mulatta , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Proteínas de la Membrana/biosíntesis , Mycobacterium tuberculosis/crecimiento & desarrollo , Unión Proteica/inmunología , Transporte de Proteínas/inmunología , Tuberculosis Pulmonar/patología , Interleucina-22
19.
Molecules ; 18(8): 9550-66, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23966077

RESUMEN

Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC) is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure.


Asunto(s)
Antivirales/farmacología , Melaleuca/química , Orthomyxoviridae/patogenicidad , Animales , Antivirales/efectos adversos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Perros , Humanos , Simulación de Dinámica Molecular , Orthomyxoviridae/efectos de los fármacos
20.
Gut Microbes ; 15(1): 2211501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37203220

RESUMEN

Magnitude and diversity of gut microbiota and metabolic systems are critical in shaping human health and diseases, but it remains largely unclear how complex metabolites may selectively regulate gut microbiota and determine health and diseases. Here, we show that failures or compromised effects of anti-TNF-α therapy in inflammatory bowel diseases (IBD) patients were correlated with intestinal dysbacteriosis with more pro-inflammatory bacteria, extensive unresolved inflammation, failed mucosal repairment, and aberrant lipid metabolism, particularly lower levels of palmitoleic acid (POA). Dietary POA repaired gut mucosal barriers, reduced inflammatory cell infiltrations and expressions of TNF-α and IL-6, and improved efficacy of anti-TNF-α therapy in both acute and chronic IBD mouse models. Ex vivo treatment with POA in cultured inflamed colon tissues derived from Crohn's disease (CD) patients reduced pro-inflammatory signaling/cytokines and conferred appreciable tissue repairment. Mechanistically, POA significantly upregulated the transcriptional signatures of cell division and biosynthetic process of Akkermansia muciniphila, selectively increased the growth and abundance of Akkermansia muciniphila in gut microbiota, and further reprogrammed the composition and structures of gut microbiota. Oral transfer of such POA-reprogrammed, but not control, gut microbiota induced better protection against colitis in anti-TNF-α mAb-treated recipient mice, and co-administration of POA with Akkermansia muciniphila showed significant synergistic protections against colitis in mice. Collectively, this work not only reveals the critical importance of POA as a polyfunctional molecular force to shape the magnitude and diversity of gut microbiota and therefore promote the intestinal homeostasis, but also implicates a new potential therapeutic strategy against intestinal or abenteric inflammatory diseases.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Inhibidores del Factor de Necrosis Tumoral/metabolismo , Colitis/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Verrucomicrobia/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Terapia Biológica , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA