Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 110(3): e21899, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35419869

RESUMEN

Apriona germari is one of the most serious wood-boring pests that cause damage to economic and landscaping trees and has adapted to a wide range of plants as diet. Gut bacteria play an important role in biology and ecology of herbivores, especially in growth and adaptation. To investigate how plant hosts shape A. germari gut microbiota, A. germari larvae were collected from Populus tomentosa and Malus pumilal, and gut microbiomes were sequenced based on 16S rDNA high-throughput sequencing technology. A total of 853,424 high-quality reads were obtained and clustered into 196 operational taxonomic units under a 97% similarity cutoff, which were annotated into 8 phyla, 10 classes, 21 orders, 34 families, 59 genera, and 39 species. Gibbsiella was the most dominant genus of intestinal bacteria, followed by Enterobacter and Acinetobacter. No significant difference was observed in larvae gut bacterial richness and diversity of A. germari collected from two hosts, though alpha diversity showed that the richness of gut bacteria in A. germari larvae collected on P. tomentosa was slightly higher than that in A. germari on M. pumilal, and beta diversity showed little difference between two host plants. The functional abundance analysis of the detected bacteria revealed fermentation, chemoheterotrophy, symbionts, and nitrate relative functions that highly possibly support wood-boring beetles to feed on woody tissues. Our study provided a theoretical basis for investigating the function of intestinal symbiosis bacteria of A. germari.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Animales , Bacterias/genética , Escarabajos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Larva/microbiología , ARN Ribosómico 16S/genética
2.
Arch Insect Biochem Physiol ; 104(3): e21676, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32323892

RESUMEN

The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.


Asunto(s)
Aconitina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Mariposas Nocturnas/microbiología , Nicotina/farmacología , Animales , Bacterias/clasificación , Bacterias/genética , Larix , Larva/efectos de los fármacos , Larva/microbiología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Hojas de la Planta , ARN Ribosómico 16S , Salix
3.
Arch Insect Biochem Physiol ; 104(3): e21691, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32410326

RESUMEN

In the present study, diel pattern in gut microbial communities in insects were evaluated. Lymantria dispar asiatica fourth instar larvae (72 ± 2 hr after molting) at noon (LdD) and midnight (LdN) were used for a comparative analysis of the gut microbial community. Ten bacterial operational taxonomic units (OTUs) were shared between LdD and LdN samples. One bacterial OTU was specific to LdD. The dominant gut microbes were OTU72 in LdD and OTU75 in LdN. A linear discriminant analysis effect size cladogram suggested that ten bacterial OTUs maintain significant differences in relative abundances between LdD and LdN. These results agreed with the discrete ellipses between LdD and LdN in principal coordinates analysis plots. Additionally, using phylogenetic investigation of communities by reconstruction of unobserved states, the gut microbial community was assigned to 23 functional terms, among which 22 exhibited significant differences between LdD and LdN. To conclude, the present study documented a diel pattern in the gut microbial community of L. dispar asiatica larvae.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal/fisiología , Mariposas Nocturnas/microbiología , Animales , Bacterias/clasificación , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia
4.
Arch Insect Biochem Physiol ; 103(4): e21654, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31916310

RESUMEN

To study dietary pH effects on Lymantria dispar asiatica larvae and provide a theoretical basis for its control in different forests, phosphate buffers (PBs) of pH 6, 7, and 8 were used to prepare experimental diets. The diet prepared with pH 6 PB was named as DPB6, with pH 8 PB as DPB8, and with pH 7 PB as DPB7 (control). The dietary pH was 5.00 in DPB6, 6.05 in control, and 6.50 in DPB8. After feeding on the diets with different pH values for 84 hr, fourth-instar caterpillars were randomly collected. Growth and various physiological traits were determined and 16S recombinant DNA sequencing was performed using the intestinal microflora of surviving larvae. Results showed that the mortality was 30% in DPB6, and 10% in DPB8, while no mortality was observed in control. The partial least squares discriminant analyses suggested that diets prepared with PB of different pH resulted in different food intake, amount of produced feces, weight gain, digestive enzyme activities, and antioxidant enzyme activities in larvae. Interestingly, both the highest weight gain and the lowest total antioxidant capacities were seen in control larvae. Results also showed that the larval gut microbiota community structure was significantly affected by dietary pH. Moreover, linear discriminant analysis effect size suggested that the family Acetobacteraceae in control, genus Prevotella in DPB8, and genus Lactococcus, family Flavobacteriaceae, family Mitochondria, and family Burkholderiaceae in DPB6 contributed to the diversity of the larval gut microbial community.


Asunto(s)
Alimentación Animal/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Animales , Dieta , Concentración de Iones de Hidrógeno , Larva/crecimiento & desarrollo , Larva/microbiología
5.
Pestic Biochem Physiol ; 164: 196-202, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284127

RESUMEN

Lymantria dispar asiatica is a globally distributed herbivorous pest. Avermectin is a highly effective, broad-spectrum insecticide. In this study, fourth instar L. dispar asiatica larvae were exposed to a LC30 dose of avermectin. The structure and function of larval gut microbial community was analyzed to examine how gut microbiota in L. dispar asiatica larvae responded to avermectin stress. Results showed that the structure and function of gut microbial community in L. dispar asiatica larvae were varied by avermectin stress. To be precise, more than half quantity of the observed Optical Taxonomic Units (OTUs) showed significantly different abundances under avermectin stress. Linear discriminant analysis effect size (LEfSe) suggested nine bacterial genera and 12 fungal genera contributed to the different gut microbial community structure in L. dispar asiatica larvae. Gut microbial function classification (PICRUSt and FUNGuild) suggested that three bacterial function categories and a fungal function guild were significantly increased, and two fungal function guilds were significantly decreased by avermectin stress. This study furthers our understanding of the physiology of L. dispar asiatica larvae under avermectin stress, and is an essential step towards future development of potential pesticide targets.


Asunto(s)
Insecticidas , Lepidópteros , Mariposas Nocturnas , Animales , Ivermectina/análogos & derivados , Larva
6.
Insects ; 15(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39057267

RESUMEN

Endophytes, prevalent in plants, mediate plant-insect interactions. Nevertheless, our understanding of the key members of endophyte communities involved in inhibiting or assisting EAB infestation remains limited. Employing ITS and 16S rRNA high-throughput sequencing, along with network analysis techniques, we conducted a comprehensive investigation into the reaction of endophytic fungi and bacteria within F. bungeana phloem by comparing EAB-infested and uninfected samples. Our findings reveal that EAB infestation significantly impacts the endophytic communities, altering both their diversity and overall structure. Interestingly, both endophytic fungi and bacteria exhibited distinct patterns in response to the infestation. For instance, in the EAB-infested phloem, the fungi abundance remained unchanged, but diversity decreased significantly. Conversely, bacterial abundance increased, without significant diversity changes. The fungi community structure altered significantly, which was not observed in bacteria. The bacterial composition in the infested phloem underwent significant changes, characterized by a substantial decrease in beneficial species abundance, whereas the fungal composition remained largely unaffected. In network analysis, the endophytes in infested phloem exhibited a modular topology, demonstrating greater complexity due to an augmented number of network nodes, elevated negative correlations, and a core genera shift compared to those observed in healthy phloem. Our findings increase understanding of plant-insect-microorganism relationships, crucial for pest control, considering endophytic roles in plant defense.

7.
Sci Rep ; 10(1): 22025, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328590

RESUMEN

Little is known about the relationship between soil microbial communities and soil properties in southern boreal forests. To further our knowledge about that relationship, we compared the soil samples in southern boreal forests of the Greater Khingan Mountains-the southernmost boreal forest biome in the world. The forests can be divided into boardleaf forests dominated by birch (Betula platyphylla) or aspen (Populus davidiana) and coniferous forests dominated by larch (Larix gmelinii) or pine (Pinus sylvestris var. mongolica). Results suggested different soil microbial communities and soil properties between these southern boreal forests. Soil protease activity strongly associated with soil fungal communities in broadleaf and coniferous forests (p < 0.05), but not with soil bacterial communities (p > 0.05). Soil ammonium nitrogen and total phosphorus contents strongly associated with soil fungal and bacterial communities in broadleaf forests (p < 0.05), but not in coniferous forests (p > 0.05). Soil potassium content demonstrated strong correlations with both soil fungal and bacterial communities in broadleaf and coniferous forests (p < 0.05). These results provide evidence for different soil communities and soil properties in southern boreal forest, and further elucidate the explicit correlation between soil microbial communities and soil properties in southern boreal forests.


Asunto(s)
Bacterias/metabolismo , Hongos/fisiología , Microbiología del Suelo , Suelo/química , Taiga , China , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA