Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 23(4): 506-511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191633

RESUMEN

Surface plasmon polaritons and phonon polaritons offer a means of surpassing the diffraction limit of conventional optics and facilitate efficient energy storage, local field enhancement and highsensitivity sensing, benefiting from their subwavelength confinement of light. Unfortunately, losses severely limit the propagation decay length, thus restricting the practical use of polaritons. While optimizing the fabrication technique can help circumvent the scattering loss of imperfect structures, the intrinsic absorption channel leading to heat production cannot be eliminated. Here, we utilize synthetic optical excitation of complex frequency with virtual gain, synthesized by combining the measurements made at multiple real frequencies, to compensate losses in the propagations of phonon polaritons with dramatically enhanced propagation distance. The concept of synthetic complex frequency excitation represents a viable solution to the loss problem for various applications including photonic circuits, waveguiding and plasmonic/phononic structured illumination microscopy.

2.
Science ; 381(6659): 766-771, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590345

RESUMEN

Superlenses made of plasmonic materials and metamaterials can image features at the subdiffraction scale. However, intrinsic losses impose a serious restriction on imaging resolution, a problem that has hindered widespread applications of superlenses. Optical waves of complex frequency that exhibit a temporally attenuating behavior have been proposed to offset the intrinsic losses in superlenses through the introduction of virtual gain, but experimental realization has been lacking because of the difficulty of imaging measurements with temporal decay. In this work, we present a multifrequency approach to constructing synthetic excitation waves of complex frequency based on measurements at real frequencies. This approach allows us to implement virtual gain experimentally and observe deep-subwavelength images. Our work offers a practical solution to overcome the intrinsic losses of plasmonic systems for imaging and sensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA