Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 14(12): e1007856, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30596640

RESUMEN

Genetic variants in genome-wide association studies (GWAS) are tested for disease association mostly using simple regression, one variant at a time. Standard approaches to improve power in detecting disease-associated SNPs use multiple regression with Bayesian variable selection in which a sparsity-enforcing prior on effect sizes is used to avoid overtraining and all effect sizes are integrated out for posterior inference. For binary traits, the logistic model has not yielded clear improvements over the linear model. For multi-SNP analysis, the logistic model required costly and technically challenging MCMC sampling to perform the integration. Here, we introduce the quasi-Laplace approximation to solve the integral and avoid MCMC sampling. We expect the logistic model to perform much better than multiple linear regression except when predicted disease risks are spread closely around 0.5, because only close to its inflection point can the logistic function be well approximated by a linear function. Indeed, in extensive benchmarks with simulated phenotypes and real genotypes, our Bayesian multiple LOgistic REgression method (B-LORE) showed considerable improvements (1) when regressing on many variants in multiple loci at heritabilities ≥ 0.4 and (2) for unbalanced case-control ratios. B-LORE also enables meta-analysis by approximating the likelihood functions of individual studies by multivariate normal distributions, using their means and covariance matrices as summary statistics. Our work should make sparse multiple logistic regression attractive also for other applications with binary target variables. B-LORE is freely available from: https://github.com/soedinglab/b-lore.


Asunto(s)
Teorema de Bayes , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Modelos Logísticos , Modelos Genéticos , Estudios de Casos y Controles , Simulación por Computador , Enfermedad de la Arteria Coronaria/genética , Variación Genética , Humanos , Funciones de Verosimilitud , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos
2.
Eur Heart J ; 40(29): 2413-2420, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31170283

RESUMEN

AIMS: Genetic disposition and lifestyle factors are understood as independent components underlying the risk of multiple diseases. In this study, we aim to investigate the interplay between genetics, educational attainment-an important denominator of lifestyle-and coronary artery disease (CAD) risk. METHODS AND RESULTS: Based on the effect sizes of 74 genetic variants associated with educational attainment, we calculated a 'genetic education score' in 13 080 cases and 14 471 controls and observed an inverse correlation between the score and risk of CAD [P = 1.52 × 10-8; odds ratio (OR) 0.79, 95% confidence interval (CI) 0.73-0.85 for the higher compared with the lowest score quintile]. We replicated in 146 514 individuals from UK Biobank (P = 1.85 × 10-6) and also found strong associations between the 'genetic education score' with 'modifiable' risk factors including smoking (P = 5.36 × 10-23), body mass index (BMI) (P = 1.66 × 10-30), and hypertension (P = 3.86 × 10-8). Interestingly, these associations were only modestly attenuated by adjustment for years spent in school. In contrast, a model adjusting for BMI and smoking abolished the association signal between the 'genetic education score' and CAD risk suggesting an intermediary role of these two risk factors. Mendelian randomization analyses performed with summary statistics from large genome-wide meta-analyses and sensitivity analysis using 1271 variants affecting educational attainment (OR 0.68 for the higher compared with the lowest score quintile; 95% CI 0.63-0.74; P = 3.99 × 10-21) further strengthened these findings. CONCLUSION: Genetic variants known to affect educational attainment may have implications for a health-conscious lifestyle later in life and subsequently affect the risk of CAD.


Asunto(s)
Enfermedad Coronaria/genética , Escolaridad , Enfermedad Coronaria/etiología , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Estilo de Vida , Masculino , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
3.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28461624

RESUMEN

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Asunto(s)
Enfermedad Coronaria/genética , Enfermedad Coronaria/prevención & control , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Fumar/genética , Proteína ADAMTS7/genética , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Enfermedad Coronaria/epidemiología , Vasos Coronarios/patología , Vasos Coronarios/fisiología , Femenino , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Fumar/efectos adversos , Fumar/epidemiología
4.
N Engl J Med ; 372(17): 1608-18, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25853659

RESUMEN

BACKGROUND: The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS: We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS: We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS: There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.).


Asunto(s)
Estatura/genética , Enfermedad de la Arteria Coronaria/genética , Variación Genética , Adulto , LDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/etiología , Humanos , Hiperlipidemias/complicaciones , Oportunidad Relativa , Factores de Riesgo , Triglicéridos/sangre
5.
Circ Res ; 118(1): 83-94, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26487741

RESUMEN

RATIONALE: Coronary artery disease (CAD) is a critical determinant of morbidity and mortality. Previous studies have identified several cardiovascular disease risk factors, which may partly arise from a shared genetic basis with CAD, and thus be useful for discovery of CAD genes. OBJECTIVE: We aimed to improve discovery of CAD genes and inform the pathogenic relationship between CAD and several cardiovascular disease risk factors using a shared polygenic signal-informed statistical framework. METHODS AND RESULTS: Using genome-wide association studies summary statistics and shared polygenic pleiotropy-informed conditional and conjunctional false discovery rate methodology, we systematically investigated genetic overlap between CAD and 8 traits related to cardiovascular disease risk factors: low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, systolic blood pressure, and type 1 diabetes mellitus. We found significant enrichment of single-nucleotide polymorphisms associated with CAD as a function of their association with low-density lipoprotein, high-density lipoprotein, triglycerides, type 2 diabetes mellitus, C-reactive protein, body mass index, systolic blood pressure, and type 1 diabetes mellitus. Applying the conditional false discovery rate method to the enriched phenotypes, we identified 67 novel loci associated with CAD (overall conditional false discovery rate <0.01). Furthermore, we identified 53 loci with significant effects in both CAD and at least 1 of low-density lipoprotein, high-density lipoprotein, triglycerides, type 2 diabetes mellitus, C-reactive protein, systolic blood pressure, and type 1 diabetes mellitus. CONCLUSIONS: The observed polygenic overlap between CAD and cardiometabolic risk factors indicates a pathogenic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/diagnóstico , Femenino , Humanos , Estudios Prospectivos , Factores de Riesgo
6.
Arterioscler Thromb Vasc Biol ; 35(10): 2207-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26293461

RESUMEN

OBJECTIVE: Genome-wide association studies have to date identified 159 significant and suggestive loci for coronary artery disease (CAD). We now report comprehensive bioinformatics analyses of sequence variation in these loci to predict candidate causal genes. APPROACH AND RESULTS: All annotated genes in the loci were evaluated with respect to protein-coding single-nucleotide polymorphism and gene expression parameters. The latter included expression quantitative trait loci, tissue specificity, and miRNA binding. High priority candidate genes were further identified based on literature searches and our experimental data. We conclude that the great majority of causal variations affecting CAD risk occur in noncoding regions, with 41% affecting gene expression robustly versus 6% leading to amino acid changes. Many of these genes differed from the traditionally annotated genes, which was usually based on proximity to the lead single-nucleotide polymorphism. Indeed, we obtained evidence that genetic variants at CAD loci affect 98 genes which had not been linked to CAD previously. CONCLUSIONS: Our results substantially revise the list of likely candidates for CAD and suggest that genome-wide association studies efforts in other diseases may benefit from similar bioinformatics analyses.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Sitios Genéticos , Variación Genética , Humanos , Masculino , MicroARNs/genética , Valor Predictivo de las Pruebas , Regiones Promotoras Genéticas/genética
8.
Biochim Biophys Acta ; 1844(1 Pt B): 271-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23774196

RESUMEN

Previously, the different mechanisms of HBV infection and HCV infection were studied experimentally. Multiple studies also compared the differential network between HBV induced HCC and HCV induced HCC based on gene expression data. However network level comparison combining viral-human interaction network and dysfunctional protein interaction network for HBV and HCV-HCC has rarely been done before. In this work we did some pioneer job in construction of HBV/HCV viral dysfunctional network in HCC, in hope of investigating viral infection impact on the change of genome expression and eventually, the development of HCC. We found that HBx, the main HBV viral protein, directly acted on the gene groups of cell cycle, which could perfectly explain the dominant cell proliferation effect shown in the dysfunctional network of HBV-HCC. On the other hand, multiple important HCV viral proteins including CORE, NS3 and NS5A were found to target very important cancer related proteins such as TP53 and SMAD3, but no direct targeting to major immune response or inflammation related proteins. Therefore the dominant activation of immune response and inflammation related pathways shown in dysfunctional network of HCV-HCC might not be a direct effect of HCV infection. They might have been an indirect demonstration of activated cancer promoting pathways. Similar approaches may as well be applied to other important virus infection caused human diseases to help elucidate the mechanisms of virus-host interaction, and even help with investigations on anti-virus based therapies. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications.


Asunto(s)
Hepatitis C/genética , Interacciones Huésped-Parásitos , Mapas de Interacción de Proteínas , Proteínas Virales/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Regulación Viral de la Expresión Génica , Hepacivirus/genética , Hepatitis B/genética , Hepatitis B/virología , Virus de la Hepatitis B/genética , Hepatitis C/virología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Virales/química , Proteínas Virales/clasificación
9.
Clin Res Cardiol ; 112(2): 247-257, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35987817

RESUMEN

BACKGROUND: The joint contribution of genetic and environmental exposures to noncommunicable diseases is not well characterized. OBJECTIVES: We modeled the cumulative effects of common risk alleles and their prevalence variations with classical risk factors. METHODS: We analyzed mathematically and statistically numbers and effect sizes of established risk alleles for coronary artery disease (CAD) and other conditions. RESULTS: In UK Biobank, risk alleles counts in the lowest (175.4) and highest decile (205.7) of the distribution differed by only 16.9%, which nevertheless increased CAD prevalence 3.4-fold (p < 0.01). Irrespective of the affected gene, a single risk allele multiplied the effects of all others carried by a person, resulting in a 2.9-fold stronger effect size in the top versus the bottom decile (p < 0.01) and an exponential increase in risk (R > 0.94). Classical risk factors shifted effect sizes to the steep upslope of the logarithmic function linking risk allele numbers with CAD prevalence. Similar phenomena were observed in the Estonian Biobank and for risk alleles affecting diabetes mellitus, breast and prostate cancer. CONCLUSIONS: Alleles predisposing to common diseases can be carried safely in large numbers, but few additional ones lead to sharp risk increments. Here, we describe exponential functions by which risk alleles combine interchangeably but multiplicatively with each other and with modifiable risk factors to affect prevalence. Our data suggest that the biological systems underlying these diseases are modulated by hundreds of genes but become only fragile when a narrow window of total risk, irrespective of its genetic or environmental origins, has been passed.


Asunto(s)
Enfermedad de la Arteria Coronaria , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Alelos , Reino Unido/epidemiología , Prevalencia
10.
BMC Genomics ; 13 Suppl 8: S14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23282077

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world, and metastasis is a significant cause to the high mortality in patients with HCC. However, the molecular mechanism behind HCC metastasis is not fully understood. Study of regulatory networks may help investigate HCC metastasis in the way of systems biology profiling. METHODS: By utilizing both sequence information and parallel microRNA(miRNA) and mRNA expression data on the same cohort of HBV related HCC patients without or with venous metastasis, we constructed combinatorial regulatory networks of non-metastatic and metastatic HCC which contain transcription factor(TF) regulation and miRNA regulation. Differential regulation patterns, classifying marker modules, and key regulatory miRNAs were analyzed by comparing non-metastatic and metastatic networks. RESULTS: Globally TFs accounted for the main part of regulation while miRNAs for the minor part of regulation. However miRNAs displayed a more active role in the metastatic network than in the non-metastatic one. Seventeen differential regulatory modules discriminative of the metastatic status were identified as cumulative-module classifier, which could also distinguish survival time. MiR-16, miR-30a, Let-7e and miR-204 were identified as key miRNA regulators contributed to HCC metastasis. CONCLUSION: In this work we demonstrated an integrative approach to conduct differential combinatorial regulatory network analysis in the specific context venous metastasis of HBV-HCC. Our results proposed possible transcriptional regulatory patterns underlying the different metastatic subgroups of HCC. The workflow in this study can be applied in similar context of cancer research and could also be extended to other clinical topics.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Metástasis de la Neoplasia/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Estudios de Cohortes , Virus de la Hepatitis B , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Valor Predictivo de las Pruebas , Pronóstico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Nat Cardiovasc Res ; 1(4): 361-371, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35479509

RESUMEN

Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between genetically-determined ventricular stiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and potential tractable targets.

12.
Nat Cardiovasc Res ; 1(1): 85-100, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36276926

RESUMEN

Coronary atherosclerosis results from the delicate interplay of genetic and exogenous risk factors, principally taking place in metabolic organs and the arterial wall. Here we show that 224 gene-regulatory coexpression networks (GRNs) identified by integrating genetic and clinical data from patients with (n = 600) and without (n = 250) coronary artery disease (CAD) with RNA-seq data from seven disease-relevant tissues in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study largely capture this delicate interplay, explaining >54% of CAD heritability. Within 89 cross-tissue GRNs associated with clinical severity of CAD, 374 endocrine factors facilitated inter-organ interactions, primarily along an axis from adipose tissue to the liver (n = 152). This axis was independently replicated in genetically diverse mouse strains and by injection of recombinant forms of adipose endocrine factors (EPDR1, FCN2, FSTL3 and LBP) that markedly altered blood lipid and glucose levels in mice. Altogether, the STARNET database and the associated GRN browser (http://starnet.mssm.edu) provide a multiorgan framework for exploration of the molecular interplay between cardiometabolic disorders and CAD.

13.
Cardiovasc Res ; 118(4): 1088-1102, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33878186

RESUMEN

AIMS: Coronary artery disease (CAD) has a strong genetic predisposition. However, despite substantial discoveries made by genome-wide association studies (GWAS), a large proportion of heritability awaits identification. Non-additive genetic effects might be responsible for part of the unaccounted genetic variance. Here, we attempted a proof-of-concept study to identify non-additive genetic effects, namely epistatic interactions, associated with CAD. METHODS AND RESULTS: We tested for epistatic interactions in 10 CAD case-control studies and UK Biobank with focus on 8068 SNPs at 56 loci with known associations with CAD risk. We identified a SNP pair located in cis at the LPA locus, rs1800769 and rs9458001, to be jointly associated with risk for CAD [odds ratio (OR) = 1.37, P = 1.07 × 10-11], peripheral arterial disease (OR = 1.22, P = 2.32 × 10-4), aortic stenosis (OR = 1.47, P = 6.95 × 10-7), hepatic lipoprotein(a) (Lp(a)) transcript levels (beta = 0.39, P = 1.41 × 10-8), and Lp(a) serum levels (beta = 0.58, P = 8.7 × 10-32), while individual SNPs displayed no association. Further exploration of the LPA locus revealed a strong dependency of these associations on a rare variant, rs140570886, that was previously associated with Lp(a) levels. We confirmed increased CAD risk for heterozygous (relative OR = 1.46, P = 9.97 × 10-32) and individuals homozygous for the minor allele (relative OR = 1.77, P = 0.09) of rs140570886. Using forward model selection, we also show that epistatic interactions between rs140570886, rs9458001, and rs1800769 modulate the effects of the rs140570886 risk allele. CONCLUSIONS: These results demonstrate the feasibility of a large-scale knowledge-based epistasis scan and provide rare evidence of an epistatic interaction in a complex human disease. We were directed to a variant (rs140570886) influencing risk through additive genetic as well as epistatic effects. In summary, this study provides deeper insights into the genetic architecture of a locus important for cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/genética , Epistasis Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Lipoproteína(a)/genética , Polimorfismo de Nucleótido Simple
14.
Clin Res Cardiol ; 110(2): 211-219, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32740755

RESUMEN

BACKGROUND: Epidemiological studies have shown inverse association between intelligence and coronary artery disease (CAD) risk, but the underlying mechanisms remain unclear. METHODS: Based on 242 SNPs independently associated with intelligence, we calculated the genetic intelligence score (gIQ) for participants from 10 CAD case-control studies (n = 34,083) and UK Biobank (n = 427,306). From UK Biobank, we extracted phenotypes including body mass index (BMI), type 2 diabetes (T2D), smoking, hypertension, HDL cholesterol, LDL cholesterol, measured intelligence score, and education attainment. To estimate the effects of gIQ on CAD and its related risk factors, regression analyses was applied. Next, we studied the mediatory roles of measured intelligence and educational attainment. Lastly, Mendelian randomization was performed to validate the findings. RESULTS: In CAD case-control studies, one standard deviation (SD) increase of gIQ was related to a 5% decrease of CAD risk (odds ratio [OR] of 0.95; 95% confidence interval [CI] 0.93 to 0.98; P = 4.93e-5), which was validated in UK Biobank (OR = 0.97; 95% CI 0.96 to 0.99; P = 6.4e-4). In UK Biobank, we also found significant inverse correlations between gIQ and risk factors of CAD including smoking, BMI, T2D, hypertension, and a positive correlation with HDL cholesterol. The association signals between gIQ and CAD as well as its risk factors got largely attenuated after the adjustment of measured intelligence and educational attainment. The causal role of intelligence in mediating CAD risk was confirmed by Mendelian randomization analyses. CONCLUSION: Genetic components of intelligence affect measured intelligence and educational attainment, which subsequently affect the prevalence of CAD via a series of unfavorable risk factor profiles.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Inteligencia/fisiología , Índice de Masa Corporal , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/psicología , Femenino , Alemania/epidemiología , Humanos , Incidencia , Masculino , Reino Unido/epidemiología
15.
Atherosclerosis ; 311: 84-90, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32949947

RESUMEN

BACKGROUND AND AIMS: Very rare loss-of-function mutations in the apolipoprotein C3 (APOC3) gene have been associated with low circulating apoC-III, low triglycerides, and reduced cardiovascular risk. We aimed to analyze the impact of common APOC3 variants on key parameters of lipid metabolism and coronary artery disease in the largest sample so far. METHODS: Common variants in APOC3 were tested for associations with circulating apoC-III, lipids, and apolipoprotein B (apoB) in 3041 participants of the LUdwigshafen RIsk and Cardiovascular health study (LURIC). These variants were then tested for associations with coronary artery disease in a meta-analysis comprising up to 332,389 participants of the CARDIOGRAMplusC4D consortium and the UK Biobank. RESULTS: The mean (standard deviation) apoC-III concentration was 14.6 (5.1) mg/dl. Seven common variants in APOC3 (rs734104, rs4520, rs5142, rs5141, rs5130, rs5128, and rs4225) were associated with circulating apoC-III (all p < 0.05). The alleles that modestly raised apoC-III were also associated with markedly higher total triglycerides and very low density lipoprotein (VLDL) triglycerides and cholesterol (all p < 0.05), but not with low density lipoprotein (LDL) cholesterol and total apoB (all p > 0.05). These variants were not associated with coronary artery disease in the CARDIOGRAMplusC4D consortium and the UK Biobank (all p > 0.1). CONCLUSIONS: Modest, genetically caused elevations of apoC-III are associated with a marked increase of triglyceride-rich lipoproteins but not with an increase of LDL cholesterol, total apoB, and coronary artery disease. Whether effective inhibition of apoC-III production with antisense oligomers will be instrumental to reduce cardiovascular risk remains to be demonstrated.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hipertrigliceridemia , Apolipoproteína C-III/genética , Apolipoproteínas B/genética , VLDL-Colesterol , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Humanos , Lipoproteínas VLDL , Triglicéridos
16.
J Am Coll Cardiol ; 73(23): 2932-2942, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31196449

RESUMEN

BACKGROUND: The taxonomy of cardiovascular (CV) diseases is divided into a broad spectrum of clinical entities. Many such diseases coincide in specific patient groups and suggest shared predisposition. OBJECTIVES: This study focused on coronary artery disease (CAD) and investigated the genetic relationship to CV and non-CV diseases with reported CAD comorbidity. METHODS: This study examined 425,196 UK Biobank participants to determine a genetic risk score (GRS) based on 300 CAD associated variants (CAD-GRS). This score was associated with 22 traits, including risk factors, diseases secondary to CAD, as well as comorbid and non-CV conditions. Sensitivity analyses were performed in individuals free from CAD or stable angina diagnosis. RESULTS: Hypercholesterolemia (odds ratio [OR]: 1.27; 95% CI: 1.26 to 1.29) and hypertension (OR: 1.11; 95% CI: 1.10 to 1.12) were strongly associated with the CAD-GRS, which indicated that the score contained variants predisposing to these conditions. However, the CAD-GRS was also significant in patients with CAD who were free of CAD risk factors (OR: 1.37; 95% CI: 1.30 to 1.44). The study observed significant associations between the CAD-GRS and peripheral arterial disease (OR: 1.28; 95% CI: 1.23 to 1.32), abdominal aortic aneurysms (OR: 1.28; 95% CI: 1.20 to 1.37), and stroke (OR: 1.08; 95% CI: 1.05 to 1.10), which remained significant in sensitivity analyses that suggested shared genetic predisposition. The score was also associated with heart failure (OR: 1.25; 95% CI: 1.22 to 1.29), atrial fibrillation (OR: 1.08; 95% CI: 1.05 to 1.10), and premature death (OR: 1.04; 95% CI: 1.02 to 1.06). These associations were abolished in sensitivity analyses that indicated that they were secondary to prevalent CAD. Finally, an inverse association was observed between the score and migraine headaches (OR: 0.94; 95% CI: 0.93 to 0.96). CONCLUSIONS: A wide spectrum of CV conditions, including premature death, might develop consecutively or in parallel with CAD for the same genetic roots. In conditions like heart failure, the study found evidence that the CAD-GRS could be used to stratify patients with no or limited genetic overlap with CAD risk. Increased genetic predisposition to CAD was inversely associated with migraine headaches.


Asunto(s)
Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Adulto , Anciano , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Bancos de Muestras Biológicas/tendencias , Estudios de Cohortes , Enfermedad de la Arteria Coronaria/diagnóstico , Femenino , Humanos , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/epidemiología , Hipercolesterolemia/genética , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/genética , Enfermedades Renales/diagnóstico , Enfermedades Renales/epidemiología , Enfermedades Renales/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Medición de Riesgo/métodos , Factores de Riesgo , Reino Unido/epidemiología
17.
J Am Coll Cardiol ; 73(23): 2946-2957, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31196451

RESUMEN

BACKGROUND: Genetic variants currently known to affect coronary artery disease (CAD) risk explain less than one-quarter of disease heritability. The heritability contribution of gene regulatory networks (GRNs) in CAD, which are modulated by both genetic and environmental factors, is unknown. OBJECTIVES: This study sought to determine the heritability contributions of single nucleotide polymorphisms affecting gene expression (eSNPs) in GRNs causally linked to CAD. METHODS: Seven vascular and metabolic tissues collected in 2 independent genetics-of-gene-expression studies of patients with CAD were used to identify eSNPs and to infer coexpression networks. To construct GRNs with causal relations to CAD, the prior information of eSNPs in the coexpression networks was used in a Bayesian algorithm. Narrow-sense CAD heritability conferred by the GRNs was calculated from individual-level genotype data from 9 European genome-wide association studies (GWAS) (13,612 cases, 13,758 control cases). RESULTS: The authors identified and replicated 28 independent GRNs active in CAD. The genetic variation in these networks contributed to 10.0% of CAD heritability beyond the 22% attributable to risk loci identified by GWAS. GRNs in the atherosclerotic arterial wall (n = 7) and subcutaneous or visceral abdominal fat (n = 9) were most strongly implicated, jointly explaining 8.2% of CAD heritability. In all, these 28 GRNs (each contributing to >0.2% of CAD heritability) comprised 24 to 841 genes, whereof 1 to 28 genes had strong regulatory effects (key disease drivers) and harbored many relevant functions previously associated with CAD. The gene activity in these 28 GRNs also displayed strong associations with genetic and phenotypic cardiometabolic disease variations both in humans and mice, indicative of their pivotal roles as mediators of gene-environmental interactions in CAD. CONCLUSIONS: GRNs capture a major portion of genetic variance and contribute to heritability beyond that of genetic loci currently known to affect CAD risk. These networks provide a framework to identify novel risk genes/pathways and study molecular interactions within and across disease-relevant tissues leading to CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética , Tejido Adiposo/patología , Tejido Adiposo/fisiología , Animales , Enfermedad de la Arteria Coronaria/diagnóstico , Endotelio Vascular/patología , Endotelio Vascular/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Suecia/epidemiología
18.
Int J Cardiol ; 276: 212-217, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30482443

RESUMEN

BACKGROUND: Aortic valve stenosis (AVS) and coronary artery disease (CAD) have a significant genetic contribution and commonly co-exist. To compare and contrast genetic determinants of the two diseases, we investigated associations of the LPA and 9p21 loci, i.e. the two strongest CAD risk loci, with risk of AVS. METHODS: We genotyped the CAD-associated variants at the LPA (rs10455872) and 9p21 loci (rs1333049) in the GeneCAST (Genetics of Calcific Aortic STenosis) Consortium and conducted a meta-analysis for their association with AVS. Cases and controls were stratified by CAD status. External validation of findings was undertaken in five cohorts including 7880 cases and 851,152 controls. RESULTS: In the meta-analysis including 4651 cases and 8231 controls the CAD-associated allele at the LPA locus was associated with increased risk of AVS (OR 1.37; 95%CI 1.24-1.52, p = 6.9 × 10-10) with a larger effect size in those without CAD (OR 1.53; 95%CI 1.31-1.79) compared to those with CAD (OR 1.27; 95%CI 1.12-1.45). The CAD-associated allele at 9p21 was associated with a trend towards lower risk of AVS (OR 0.93; 95%CI 0.88-0.99, p = 0.014). External validation confirmed the association of the LPA risk allele with risk of AVS (OR 1.37; 95%CI 1.27-1.47), again with a higher effect size in those without CAD. The small protective effect of the 9p21 CAD risk allele could not be replicated (OR 0.98; 95%CI 0.95-1.02). CONCLUSIONS: Our study confirms the association of the LPA locus with risk of AVS, with a higher effect in those without concomitant CAD. Overall, 9p21 was not associated with AVS.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Cromosomas Humanos Par 9/genética , Enfermedad de la Arteria Coronaria/genética , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo/métodos , Lipoproteína(a)/genética , Anciano , Estenosis de la Válvula Aórtica/diagnóstico , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/diagnóstico , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética
19.
Nat Commun ; 10(1): 1060, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837465

RESUMEN

Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance.


Asunto(s)
Enfermedad Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Glicina/sangre , Hiperinsulinismo/genética , Redes y Vías Metabólicas/genética , Enfermedad Coronaria/sangre , Enfermedad Coronaria/epidemiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glicina/metabolismo , Humanos , Hiperinsulinismo/sangre , Hiperinsulinismo/epidemiología , Incidencia , Polimorfismo de Nucleótido Simple
20.
Clin Res Cardiol ; 107(Suppl 2): 2-9, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30022276

RESUMEN

As clinicians, we understand the development of atherosclerosis as a consequence of cholesterol deposition and inflammation in the arterial wall, both being triggered by traditional risk factors such as hypertension, hyperlipidaemia or diabetes mellitus. Another risk factor is genetic predisposition, as indicated by the predictive value of a positive family history. However, we had to wait until recently to appreciate the abundant contribution of genetic variation to the manifestation of atherosclerosis. Indeed, by now 164 chromosomal loci have been identified by genome-wide association studies (GWAS) to affect the risk of coronary artery disease. By design, practically all risk variants discovered by GWAS are frequently found in our population, resulting in the fact that principally every Western European individual carries between 130 and 190 risk alleles at the known, genome-wide significant loci (there are 0, 1, or 2 risk alleles per locus). One can assume that it is this widespread disposition that makes mankind susceptible to the detrimental effects of lifestyle factors, which likewise increase the risk of atherosclerosis. In this review, we summarize the recent genetic discoveries and attempt to group the multiple genetic risk variants in functional groups that may become actionable from a preventive or therapeutic perspective.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Variación Genética , Genotipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA