Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(1): 100689, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043703

RESUMEN

Distinction of non-self from self is the major task of the immune system. Immunopeptidomics studies the peptide repertoire presented by the human leukocyte antigen (HLA) protein, usually on tissues. However, HLA peptides are also bound to plasma soluble HLA (sHLA), but little is known about their origin and potential for biomarker discovery in this readily available biofluid. Currently, immunopeptidomics is hampered by complex workflows and limited sensitivity, typically requiring several mL of plasma. Here, we take advantage of recent improvements in the throughput and sensitivity of mass spectrometry (MS)-based proteomics to develop a highly sensitive, automated, and economical workflow for HLA peptide analysis, termed Immunopeptidomics by Biotinylated Antibodies and Streptavidin (IMBAS). IMBAS-MS quantifies more than 5000 HLA class I peptides from only 200 µl of plasma, in just 30 min. Our technology revealed that the plasma immunopeptidome of healthy donors is remarkably stable throughout the year and strongly correlated between individuals with overlapping HLA types. Immunopeptides originating from diverse tissues, including the brain, are proportionately represented. We conclude that sHLAs are a promising avenue for immunology and potentially for precision oncology.


Asunto(s)
Neoplasias , Humanos , Estreptavidina , Medicina de Precisión , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA , Antígenos de Histocompatibilidad Clase II , Péptidos/metabolismo , Espectrometría de Masas , Anticuerpos
2.
Mol Cell Proteomics ; 23(2): 100713, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184013

RESUMEN

Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals. In a standard 2 h analysis of a 200 ng HeLa digest, this resulted in an increase of 16% in the number of quantified peptides. As the acquisition speed becomes even more important when using fast chromatographic gradients, we further applied ΦSDM methods to a range of shorter gradient lengths (21, 12, and 5 min). While ΦSDM improved identification rates and spectral quality in all tested gradients, it proved particularly advantageous for the 5 min gradient. Here, the number of identified protein groups and peptides increased by >15% in comparison to enhanced Fourier transformation processing. In conclusion, ΦSDM is an alternative signal processing algorithm for processing Orbitrap data that can improve spectral quality and benefit quantitative accuracy in typical proteomics experiments, especially when using short gradients.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Humanos , Proteoma/metabolismo , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Células HeLa , Proteómica/métodos
3.
Semin Cell Dev Biol ; 144: 31-40, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36411157

RESUMEN

Recent studies report that stem cell therapies have been applied successfully to patients, This has increased anticipations that this regeneration strategy could be a potential method to treat a wide range of intractable diseases some day. Stem cells offer new prospects for the treatment of incurable diseases and for tissue regeneration and repairation because of their unique biological properties. Angiogenesis a key process in tissue regeneration and repairation. Vascularization of organs is one of the main challenges hindering the clinical application of engineered tissues. Efficient production of engineered vascular grafts and vascularized organs is of critical importance for regenerative medicine. In this review, we focus on the types of stem cells that are widely used in tissue engineering and regeneration, as well as their application of these stem cells in the construction of tissue-engineered vascular grafts and vascularization of tissue-engineered organs.


Asunto(s)
Neovascularización Fisiológica , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Células Madre , Medicina Regenerativa , Neovascularización Patológica
4.
PLoS Pathog ; 19(2): e1011166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36753521

RESUMEN

Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/fisiología , Interleucina-6/metabolismo , Proteómica , Factores de Transcripción/metabolismo , Células Madre , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
5.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091212

RESUMEN

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Asunto(s)
Ferroptosis , Músculo Liso Vascular , Placa Aterosclerótica , Proteínas Señalizadoras YAP , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Proteínas Señalizadoras YAP/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Ratones Noqueados , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fenilendiaminas/farmacología , Ciclohexilaminas/farmacología , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
6.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092889

RESUMEN

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Asunto(s)
Transdiferenciación Celular , Dexametasona , Glaucoma , Miofibroblastos , Factores de Intercambio de Guanina Nucleótido Rho , Malla Trabecular , Dexametasona/farmacología , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo , Malla Trabecular/citología , Transdiferenciación Celular/efectos de los fármacos , Animales , Humanos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Miofibroblastos/citología , Ratones , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Glaucoma/patología , Glaucoma/metabolismo , Células Cultivadas , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Masculino
7.
PLoS Biol ; 20(5): e3001636, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576205

RESUMEN

The recent revolution in computational protein structure prediction provides folding models for entire proteomes, which can now be integrated with large-scale experimental data. Mass spectrometry (MS)-based proteomics has identified and quantified tens of thousands of posttranslational modifications (PTMs), most of them of uncertain functional relevance. In this study, we determine the structural context of these PTMs and investigate how this information can be leveraged to pinpoint potential regulatory sites. Our analysis uncovers global patterns of PTM occurrence across folded and intrinsically disordered regions. We found that this information can help to distinguish regulatory PTMs from those marking improperly folded proteins. Interestingly, the human proteome contains thousands of proteins that have large folded domains linked by short, disordered regions that are strongly enriched in regulatory phosphosites. These include well-known kinase activation loops that induce protein conformational changes upon phosphorylation. This regulatory mechanism appears to be widespread in kinases but also occurs in other protein families such as solute carriers. It is not limited to phosphorylation but includes ubiquitination and acetylation sites as well. Furthermore, we performed three-dimensional proximity analysis, which revealed examples of spatial coregulation of different PTM types and potential PTM crosstalk. To enable the community to build upon these first analyses, we provide tools for 3D visualization of proteomics data and PTMs as well as python libraries for data accession and processing.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteoma , Humanos , Espectrometría de Masas/métodos , Fosforilación , Proteómica/métodos
8.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438984

RESUMEN

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Filogenia , Metiltransferasas/genética ,
9.
J Am Chem Soc ; 146(10): 6974-6982, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417031

RESUMEN

The two-dimensional (2D) perovskites have drawn intensive attention due to their unique stability and outstanding optoelectronic properties. However, the debate surrounding the spatial phase distribution and band alignment among different 2D phases in the quasi-2D perovskite has created complexities in understanding the carrier dynamics, hindering material and device development. In this study, we employed highly sensitive transient absorption spectroscopy to investigate the carrier dynamics of (BA)2(MA)n-1PbnI3n+1 quasi-2D Ruddlesden-Popper perovskite thin films, nominally prepared as n = 4. We observed the carrier-density-dependent electron and hole transfer dynamics between the 2D and three-dimensional (3D) phases. Under a low carrier density within the linear response range, we successfully resolved three ultrafast processes of both electron and hole transfers, spanning from hundreds of femtoseconds to several picoseconds, tens to hundreds of picoseconds, and hundreds of picoseconds to several nanoseconds, which can be attributed to lateral-epitaxial, partial-epitaxial, and disordered-interface heterostructures between 2D and 3D phases. By considering the interplay among the phase structure, band alignment, and carrier dynamics, we have proposed material synthesis strategies aimed at enhancing the carrier transport. Our results not only provide deep insights into an accurate intrinsic photophysics of quasi-2D perovskites but also inspire advancements in the practical application of these materials.

10.
Nat Methods ; 18(12): 1515-1523, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34824474

RESUMEN

Great advances have been made in mass spectrometric data interpretation for intact glycopeptide analysis. However, accurate identification of intact glycopeptides and modified saccharide units at the site-specific level and with fast speed remains challenging. Here, we present a glycan-first glycopeptide search engine, pGlyco3, to comprehensively analyze intact N- and O-glycopeptides, including glycopeptides with modified saccharide units. A glycan ion-indexing algorithm developed for glycan-first search makes pGlyco3 5-40 times faster than other glycoproteomic search engines without decreasing accuracy or sensitivity. By combining electron-based dissociation spectra, pGlyco3 integrates a dynamic programming-based algorithm termed pGlycoSite for site-specific glycan localization. Our evaluation shows that the site-specific glycan localization probabilities estimated by pGlycoSite are suitable to localize site-specific glycans. With pGlyco3, we confidently identified N-glycopeptides and O-mannose glycopeptides that were extensively modified by ammonia adducts in yeast samples. The freely available pGlyco3 is an accurate and flexible tool that can be used to identify glycopeptides and modified saccharide units.


Asunto(s)
Biología Computacional/métodos , Glicopéptidos/química , Proteoma , Proteómica/métodos , Algoritmos , Animales , Luciérnagas , Glicosilación , Células HEK293 , Humanos , Manosa/química , Polisacáridos/química , Probabilidad , Reproducibilidad de los Resultados , Saccharomyces cerevisiae , Schizosaccharomyces , Programas Informáticos
11.
J Virol ; 97(5): e0031323, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37097169

RESUMEN

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Asunto(s)
Conexina 43 , Infecciones por Citomegalovirus , Citomegalovirus , Proteínas Inmediatas-Precoces , Animales , Humanos , Recién Nacido , Ratones , Conexina 43/genética , Conexina 43/metabolismo , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
12.
Mol Syst Biol ; 19(9): e11503, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37602975

RESUMEN

Single-cell proteomics aims to characterize biological function and heterogeneity at the level of proteins in an unbiased manner. It is currently limited in proteomic depth, throughput, and robustness, which we address here by a streamlined multiplexed workflow using data-independent acquisition (mDIA). We demonstrate automated and complete dimethyl labeling of bulk or single-cell samples, without losing proteomic depth. Lys-N digestion enables five-plex quantification at MS1 and MS2 level. Because the multiplexed channels are quantitatively isolated from each other, mDIA accommodates a reference channel that does not interfere with the target channels. Our algorithm RefQuant takes advantage of this and confidently quantifies twice as many proteins per single cell compared to our previous work (Brunner et al, PMID 35226415), while our workflow currently allows routine analysis of 80 single cells per day. Finally, we combined mDIA with spatial proteomics to increase the throughput of Deep Visual Proteomics seven-fold for microdissection and four-fold for MS analysis. Applying this to primary cutaneous melanoma, we discovered proteomic signatures of cells within distinct tumor microenvironments, showcasing its potential for precision oncology.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Proteoma , Proteómica , Medicina de Precisión , Microambiente Tumoral
13.
Exp Dermatol ; 33(1): e15007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284195

RESUMEN

Human amniotic epithelial stem cells (hAESCs) are regarded as potential alternatives to keratinocytes (KCs) used for skin wound healing. Light is an alternative approach for inducing stem cell differentiation. Opsins (OPNs), a family of light-sensitive, G protein-coupled receptors, play a multitude of light-dependent and light-independent functions in extraocular tissues. However, it remains unclear whether the light sensitivity and function of OPNs are involved in light-induced differentiation of hAESCs to KCs. Herein, we determine the role of OPNs in differentiation of hAESCs into KCs through cell and molecular biology approaches in vitro. It is shown that mRNA expression of OPN3 in the amniotic membrane and hAESCs was higher than the other four primary OPNs by RT-qPCR analysis. Changes in OPN3 gene expression had a significant impact on cell proliferation, stemness and differentiation capability of hAESCs. Furthermore, we found a significant upregulation of OPN3, KRT5 and KRT14 with hAESCs treated at 3 × 33 J/cm2 irradiation from blue-light LED. Taken together, these results suggest that OPN3 acts as a positive regulator of differentiation of hAESCs into KCs. This study provides a novel insight into photosensitive OPNs associated with photobiomodulation(PBM)-induced differentiation in stem cells.


Asunto(s)
Queratinocitos , Receptores Acoplados a Proteínas G , Opsinas de Bastones , Humanos , Diferenciación Celular , Proliferación Celular , Queratinocitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Células Madre/metabolismo
14.
Eur Radiol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457038

RESUMEN

OBJECTIVES: This study aimed to explore the incidence of and potential risk factors for adverse drug reactions (ADRs) after non-ionic iodinated contrast media (NICM) administration for CT exams in out-patient settings in China. MATERIALS AND METHODS: A total of 473,482 out-patients who underwent intravenous NICM between January 1st, 2017, and Dec 31st, 2021, were retrospectively enrolled from three institutions. The occurrence of ADRs and clinical information were recorded. Chi-square test, Poisson regression, and logistic regression analyses were used to evaluate potential ADR risk factors and correlation with demographics, season, and NICM type. RESULTS: Among the 473,482 patients (mean age 55.22 ± 14.85; 253,499 male) who received intravenous NICM, the overall ADR incidence was 0.110% (522 of 473,482), with 0.099% acute-related drug reactions (469 of 473,482) and 0.0004% serious ADRs (two of 473,482). Iopromide was associated with a higher risk of acute ADRs. Late ADRs were more frequently observed with iodixanol 320. Multi-level logistic regression of patients with acute ADRs and a control group (matched 1:1 for age, gender, NICM, prescriber department, and institution) showed that summer (adjusted OR = 1.579; p = 0.035) and autumn (adjusted OR = 1.925; p < 0.001) were risk factors of acute ADRs. However, underlying disease and scanned body area were not related to a higher ADR incidence. CONCLUSION: The use of NICM for out-patients is in general safe with a low ADR incidence. The type of contrast medium (iopromide) and the seasons (summer and autumn) were associated with a higher risk of acute ADRs. Late ADRs were more often observed with iodixanol. CLINICAL RELEVANCE STATEMENT: In comparison to in-patients, out-patients may be exposed to higher risk due to a lack of extensive risk screening, less nursing care, and higher throughput pressure. Safety data about NICM from a large population may complement guidelines and avoid ambiguity. KEY POINTS: • The incidence and risk factors for adverse events after using non-ionic iodinated contrast media are complex in out-patients. • Non-ionic iodinated contrast media are safe for out-patients and the overall incidence of adverse drug reactions was 0.110%. • There is a higher risk of acute adverse drug reactions in summer and autumn.

15.
Eur Radiol ; 34(2): 842-851, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37606664

RESUMEN

OBJECTIVES: To explore the use of deep learning-constrained compressed sensing (DLCS) in improving image quality and acquisition time for 3D MRI of the brachial plexus. METHODS: Fifty-four participants who underwent contrast-enhanced imaging and forty-one participants who underwent unenhanced imaging were included. Sensitivity encoding with an acceleration of 2 × 2 (SENSE4x), CS with an acceleration of 4 (CS4x), and DLCS with acceleration of 4 (DLCS4x) and 8 (DLCS8x) were used for MRI of the brachial plexus. Apparent signal-to-noise ratios (aSNRs), apparent contrast-to-noise ratios (aCNRs), and qualitative scores on a 4-point scale were evaluated and compared by ANOVA and the Friedman test. Interobserver agreement was evaluated by calculating the intraclass correlation coefficients. RESULTS: DLCS4x achieved higher aSNR and aCNR than SENSE4x, CS4x, and DLCS8x (all p < 0.05). For the root segment of the brachial plexus, no statistically significant differences in the qualitative scores were found among the four sequences. For the trunk segment, DLCS4x had higher scores than SENSE4x (p = 0.04) in the contrast-enhanced group and had higher scores than SENSE4x and DLCS8x in the unenhanced group (all p < 0.05). For the divisions, cords, and branches, DLCS4x had higher scores than SENSE4x, CS4x, and DLCS8x (all p ≤ 0.01). No overt difference was found among SENSE4x, CS4x, and DLCS8x in any segment of the brachial plexus (all p > 0.05). CONCLUSIONS: In three-dimensional MRI for the brachial plexus, DLCS4x can improve image quality compared with SENSE4x and CS4x, and DLCS8x can maintain the image quality compared to SENSE4x and CS4x. CLINICAL RELEVANCE STATEMENT: Deep learning-constrained compressed sensing can improve the image quality or accelerate acquisition of 3D MRI of the brachial plexus, which should be benefit in evaluating the brachial plexus and its branches in clinical practice. KEY POINTS: •Deep learning-constrained compressed sensing showed higher aSNR, aCNR, and qualitative scores for the brachial plexus than SENSE and CS at the same acceleration factor with similar scanning time. •Deep learning-constrained compressed sensing at acceleration factor of 8 had comparable aSNR, aCNR, and qualitative scores to SENSE4x and CS4x with approximately half the examination time. •Deep learning-constrained compressed sensing may be helpful in clinical practice for improving image quality and acquisition time in three-dimensional MRI of the brachial plexus.


Asunto(s)
Plexo Braquial , Aprendizaje Profundo , Humanos , Imagenología Tridimensional/métodos , Plexo Braquial/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido
16.
Neuroradiology ; 66(2): 207-216, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38001310

RESUMEN

PURPOSE: The characteristics of surface-based morphological patterns to primary trigeminal neuralgia (PTN) are still not well understood. This study aims to screen the useful cortical indices for the prediction of PTN and the quantification of pain severity. METHODS: Fifty PTN patients and 48 matched healthy subjects enrolled in the study from March 2016 to August 2021. High-resolution T1 data were performed at 3.0 Tesla scanner and were analyzed with FreeSurfer software to detect the abnormalities of cortical mean curve (CMC), cortical thickness (CT), surface area (SA), and cortical volume (CV) in PTN patients compared to healthy controls. Logistic regression analysis was conducted to determine whether certain morphological patterns could predict PTN disorder. Then, the relationships of cortical indices to the pain characteristics in patient group were examined using linear regression model. RESULTS: Distinctive cortical alterations were discovered through surface-based analysis, including increased temporal CMC, decreased insular CT and fusiform SA, along with decreased CV in several temporal and occipital areas. Moreover, the difference of temporal CMC was greater than other cortical parameters between the two groups, and the combination of certain morphological indices was of good value in the diagnosis for PTN. Besides, CT of left insula was negatively associated with the pain intensity in PTN patients. CONCLUSION: The patients with PTN demonstrate distinctive morphological patterns in several cortical regions, which may contribute to the imaging diagnosis of this refractory disorder and be useful for the quantification of the orofacial pain. CLINICAL TRIALS: The registry name of this study in https://clinicaltrials.gov/ : Magnetic Resonance Imaging Study on Patients with Trigeminal Neuralgia (MRI-TN) https://clinicaltrials.gov/ ID: NCT02713646 A link to the full application: https://clinicaltrials.gov/ct2/results?cond=&term=NCT02713646&cntry=&state=&city=&dist= The first patient with primary trigeminal neuralgia was recruited on November 28, 2016.


Asunto(s)
Neuralgia del Trigémino , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Dolor/complicaciones , Neuralgia del Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/complicaciones
17.
Bioorg Chem ; 143: 107019, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096683

RESUMEN

The discovery and development of CDK2 inhibitors has currently been validated as a hot topic in cancer therapy. Herein, a series of novel N-(pyridin-3-yl)pyrimidin-4-amine derivatives were designed and synthesized as potent CDK2 inhibitors. Among them, the most promising compound 7l presented a broad antiproliferative efficacy toward diverse cancer cells MV4-11, HT-29, MCF-7, and HeLa with IC50 values of 0.83, 2.12, 3.12, and 8.61 µM, respectively, which were comparable to that of Palbociclib and AZD5438. Interestingly, these compounds were less toxic on normal embryonic kidney cells HEK293 with high selectivity index. Further mechanistic studies indicated 7l caused cell cycle arrest and apoptosis on HeLa cells in a concentration-dependent manner. Moreover, 7l manifested potent and similar CDK2/cyclin A2 nhibitory activity to AZD5438 with an IC50 of 64.42 nM. These findings revealed that 7l could serve as ahighly promisingscaffoldfor CDK2 inhibitors as potential anticancer agents and functional probes.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Quinasa 2 Dependiente de la Ciclina , Relación Estructura-Actividad , Línea Celular Tumoral , Células HeLa , Aminas/farmacología , Células HEK293 , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico
18.
Acta Derm Venereol ; 104: adv13213, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38299232

RESUMEN

Retinal G protein-coupled receptor (RGR), a photosensitive protein, functions as a retinal photoisomerase under light conditions in humans. Cutaneous squamous cell carcinoma (cSCC) is linked to chronic ultraviolet exposure, which suggests that the photoreceptor RGR may be associated with tumorigenesis and progression of squamous cell carcinoma (SCC). However, the expression and function of RGR remain uncharacterized in SCC. This study analysed RGR expression in normal skin and in lesions of actinic keratosis, Bowen's disease and invasive SCC of the skin with respect to SCC initiation and development. A total of 237 samples (normal skin (n = 28), actinic keratosis (n = 42), Bowen's (n = 35) and invasive SCC (n = 132) lesions) were examined using immunohistochemistry. Invasive SCC samples had higher expression of RGR protein than the other samples. A high immunohistochemical score for RGR was associated with increased tumour size, tumour depth, Clark level, factor classification, and degree of differentiation and a more aggressive histological subtype. In addition, RGR expression was inversely correlated with involucrin expression and positively correlated with proliferating cell nuclear antigen (PCNA) and Ki67 expression. Furthermore, RGR regulates SCC cell differentiation through the PI3K-Akt signalling pathway, as determined using molecular biology approaches in vitro, suggesting that high expression of RGR is associated with aberrant proliferation and differentiation in SCC.


Asunto(s)
Enfermedad de Bowen , Carcinoma de Células Escamosas , Queratosis Actínica , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/patología , Queratosis Actínica/patología , Neoplasias Cutáneas/patología , Fosfatidilinositol 3-Quinasas , Enfermedad de Bowen/patología , Proliferación Celular , Diferenciación Celular , Receptores Acoplados a Proteínas G
19.
Paediatr Anaesth ; 34(8): 773-782, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38775778

RESUMEN

BACKGROUND: Unintended postoperative hypothermia in infants is associated with increased mortality and morbidity. We noted consistent hypothermia postoperatively in more than 60% of our neonatal intensive care (NICU) babies. Therefore, we set out to determine whether a targeted quality improvement (QI) project could decrease postoperative hypothermia rates in infants. OBJECTIVES: Our SMART aim was to reduce postoperative hypothermia (<36.5°C) in infants from 60% to 40% within 6 months. METHODS: This project was approved by IRB at Guangzhou Women and Children's Medical Center, China. The QI team included multidisciplinary healthcare providers in China and QI experts from Children's Hospital of Philadelphia, USA. The plan-do-study-act (PDSA) cycles included establishing a perioperative-thermoregulation protocol, optimizing the transfer process, and staff education. The primary outcome and balancing measures were, respectively, postoperative hypothermia and hyperthermia (axillary temperature < 36.5°C, >37.5°C). Data collected was analyzed using control charts. The factors associated with a reduction in hypothermia were explored using regression analysis. RESULTS: There were 295 infants in the project. The percentage of postoperative hypothermia decreased from 60% to 37% over 26 weeks, a special cause variation below the mean on the statistical process control chart. Reduction in hypothermia was associated with an odds of 0.17 (95% CI: 0.06-0.46; p <.001) for compliance with the transport incubator and 0.24 (95% CI: 0.1-0.58; p =.002) for prewarming the OR ambient temperature to 26°C. Two infants had hyperthermia. CONCLUSIONS: Our QI project reduced postoperative hypothermia without incurring hyperthermia through multidisciplinary team collaboration with the guidance of QI experts from the USA.


Asunto(s)
Hipotermia , Complicaciones Posoperatorias , Mejoramiento de la Calidad , Humanos , Hipotermia/prevención & control , China , Femenino , Masculino , Lactante , Recién Nacido , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/epidemiología , Unidades de Cuidado Intensivo Neonatal
20.
Skeletal Radiol ; 53(6): 1045-1059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265451

RESUMEN

OBJECTIVE: To identify and describe existing models for predicting knee pain in patients with knee osteoarthritis. METHODS: The electronic databases PubMed, EMBASE, CINAHL, Web of Science, and Cochrane Library were searched from their inception to May 2023 for any studies to develop and validate a prediction model for predicting knee pain in patients with knee osteoarthritis. Two reviewers independently screened titles, abstracts, and full-text qualifications, and extracted data. Risk of bias was assessed using the PROBAST. Data extraction of eligible articles was extracted by a data extraction form based on CHARMS. The quality of evidence was graded according to GRADE. The results were summarized with descriptive statistics. RESULTS: The search identified 2693 records. Sixteen articles reporting on 26 prediction models were included targeting occurrence (n = 9), others (n = 7), progression (n = 5), persistent (n = 2), incident (n = 1), frequent (n = 1), and flares (n = 1) of knee pain. Most of the studies (94%) were at high risk of bias. Model discrimination was assessed by the AUROC ranging from 0.62 to 0.81. The most common predictors were age, BMI, gender, baseline pain, and joint space width. Only frequent knee pain had a moderate quality of evidence; all other types of knee pain had a low quality of evidence. CONCLUSION: There are many prediction models for knee pain in patients with knee osteoarthritis that do show promise. However, the clinical extensibility, applicability, and interpretability of predictive tools should be considered during model development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA