Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333024

RESUMEN

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Asunto(s)
COVID-19/genética , Infecciones por Coronavirus/genética , Coronavirus/fisiología , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Células A549 , Animales , Vías Biosintéticas/efectos de los fármacos , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Colesterol/biosíntesis , Colesterol/metabolismo , Análisis por Conglomerados , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resfriado Común/genética , Resfriado Común/virología , Coronavirus/clasificación , Infecciones por Coronavirus/virología , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Ratones , Fosfatidilinositoles/biosíntesis , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral
2.
Nat Methods ; 20(7): 1070-1081, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37291262

RESUMEN

The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos , Ratones , Animales , Vectores Genéticos/genética , Ratones Transgénicos , Terapia Genética , Transgenes , Dependovirus/genética , Transducción Genética
3.
J Virol ; 96(8): e0198321, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35389265

RESUMEN

Mumps virus (MuV) causes a highly contagious human disease characterized by the enlargement of the parotid glands. In severe cases, mumps can lead to neurological complications such as aseptic meningitis and encephalitis. Vaccination with the attenuated Jeryl Lynn (JL) MuV vaccine has dramatically reduced the incidence of MuV infection. Recently, large outbreaks have occurred in vaccinated populations. The vaccine strain JL was generated from genotype A, while most current circulating strains belong to genotype G. In this study, we examined the immunogenicity and longevity of genotype G-based vaccines. We found that our recombinant genotype G-based vaccines provide robust neutralizing titers toward genotype G for up to 1 year in mice. In addition, we demonstrated that a third dose of a genotype G-based vaccine following two doses of JL immunization significantly increases neutralizing titers toward the genotype G strain. Our data suggest that after two doses of JL vaccination, which most people have received, a third dose of a genotype G-based vaccine can generate immunity against a genotype G strain. IMPORTANCE At present, most individuals have received two doses of the measles, mumps, and rubella (MMR) vaccine, which contains genotype A mumps vaccine. One hurdle in developing a new mumps vaccine against circulating genotype G virus is whether the new genotype G vaccine can generate immunity in humans that are immunized against genotype A virus. This work demonstrates that a novel genotype G-based vaccine can be effective in animals which received two doses of genotype A-based vaccine, suggesting that the lead genotype G vaccine may induce anti-G immunity in humans who have received two doses of the current vaccine, providing support for testing this vaccine in humans.


Asunto(s)
Sarampión , Paperas , Animales , Anticuerpos Antivirales , Genotipo , Humanos , Lactante , Sarampión/prevención & control , Vacuna contra el Sarampión-Parotiditis-Rubéola , Ratones , Paperas/prevención & control , Vacuna contra la Parotiditis/genética , Virus de la Parotiditis/genética
4.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32295907

RESUMEN

Mumps virus (MuV) caused the most viral meningitis before mass immunization. Unfortunately, MuV has reemerged in the United States in the past several years. MuV is a member of the genus Rubulavirus, in the family Paramyxoviridae, and has a nonsegmented negative-strand RNA genome. The viral RNA-dependent RNA polymerase (vRdRp) of MuV consists of the large protein (L) and the phosphoprotein (P), while the nucleocapsid protein (NP) encapsulates the viral RNA genome. These proteins make up the replication and transcription machinery of MuV. The P protein is phosphorylated by host kinases, and its phosphorylation is important for its function. In this study, we performed a large-scale small interfering RNA (siRNA) screen targeting host kinases that regulated MuV replication. The human kinase ribosomal protein S6 kinase beta-1 (RPS6KB1) was shown to play a role in MuV replication and transcription. We have validated the role of RPS6KB1 in regulating MuV using siRNA knockdown, an inhibitor, and RPS6KB1 knockout cells. We found that MuV grows better in cells lacking RPS6KB1, indicating that it downregulates viral growth. Furthermore, we detected an interaction between the MuV P protein and RPS6KB1, suggesting that RPS6KB1 directly regulates MuV replication and transcription.IMPORTANCE Mumps virus is an important human pathogen. In recent years, MuV has reemerged in the United State, with outbreaks occurring in young adults who have been vaccinated. Our work provides insight into a previously unknown mumps virus-host interaction. RPS6KB1 negatively regulates MuV replication, likely through its interaction with the P protein. Understanding virus-host interactions can lead to novel antiviral drugs and enhanced vaccine production.


Asunto(s)
Genoma Viral , Virus de la Parotiditis/genética , Proteínas de la Nucleocápside/genética , Fosfoproteínas/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Virales/genética , Animales , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Virus de la Parotiditis/metabolismo , Proteínas de la Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Células Vero , Proteínas Virales/metabolismo , Replicación Viral
6.
Mol Ther ; 28(2): 367-381, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31784416

RESUMEN

Adeno-associated virus (AAV) is a highly promising gene transfer vector, yet major cellular requirements for AAV entry are poorly understood. Using a genome-wide CRISPR screen for entry of evolutionarily divergent serotype AAVrh32.33, we identified GPR108, a member of the G protein-coupled receptor superfamily, as an AAV entry factor. Of greater than 20 divergent AAVs across all AAV clades tested in human cell lines, only AAV5 transduction was unaffected in the GPR108 knockout (KO). GPR108 dependency was further shown in murine and primary cells in vitro. These findings are further validated in vivo, as the Gpr108 KO mouse demonstrates 10- to 100-fold reduced expression for AAV8 and rh32.33 but not AAV5. Mechanistically, both GPR108 N- and C-terminal domains are required for transduction, and on the capsid, a VP1 unique domain that is not conserved on AAV5 can be transferred to confer GPR108 independence onto AAV2 chimeras. In vitro binding and fractionation studies indicate reduced nuclear import and cytosolic accumulation in the absence of GPR108. We thus have identified the second of two AAV entry factors that is conserved between mice and humans relevant both in vitro and in vivo, further providing a mechanistic understanding to the tropism of AAV gene therapy vectors.


Asunto(s)
Secuencia Conservada , Dependovirus/genética , Vectores Genéticos/genética , Secuencias de Aminoácidos , Animales , Sistemas CRISPR-Cas , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Dependovirus/clasificación , Evolución Molecular , Técnicas de Transferencia de Gen , Ingeniería Genética , Terapia Genética , Genoma Viral , Aparato de Golgi/metabolismo , Humanos , Filogenia , Dominios y Motivos de Interacción de Proteínas
7.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30068647

RESUMEN

J paramyxovirus (JPV) was first isolated from moribund mice with hemorrhagic lung lesions in Australia in 1972. It is a paramyxovirus classified under the newly proposed genus Jeilongvirus JPV has a genome of 18,954 nucleotides, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. JPV causes little cytopathic effect (CPE) in tissue culture cells but severe disease in mice. The small hydrophobic (SH) protein is an integral membrane protein encoded by many paramyxoviruses, such as mumps virus (MuV) and respiratory syncytial virus (RSV). However, the function of SH has not been defined in a suitable animal model. In this work, the functions of SH of JPV, MuV, and RSV have been examined by generating recombinant JPV lacking the SH protein (rJPV-ΔSH) or replacing SH of JPV with MuV SH (rJPV-MuVSH) or RSV SH (rJPV-RSVSH). rJPV-ΔSH, rJPV-MuVSH, and rJPV-RSVSH were viable and had no growth defect in tissue culture cells. However, more tumor necrosis factor alpha (TNF-α) was produced during rJPV-ΔSH infection, confirming the role of SH in inhibiting TNF-α production. rJPV-ΔSH induced more apoptosis in tissue culture cells than rJPV, rJPV-MuVSH, and rJPV-RSVSH, suggesting that SH plays a role in blocking apoptosis. Furthermore, rJPV-ΔSH was attenuated in mice compared to rJPV, rJPV-MuVSH, and rJPV-RSVSH, indicating that the SH protein plays an essential role in virulence. The results indicate that the functions of MuV SH and RSV SH are similar to that of JPV SH even though they have no sequence homology.IMPORTANCE Paramyxoviruses are associated with many devastating diseases in animals and humans. J paramyxovirus (JPV) was isolated from moribund mice in Australia in 1972. Newly isolated viruses, such as Beilong virus (BeiPV) and Tailam virus (TlmPV), have genome structures similar to that of JPV. A new paramyxovirus genus, Jeilongvirus, which contains JPV, BeiPV, and TlmPV, has been proposed. Small hydrophobic (SH) protein is present in many paramyxoviruses. Our present study investigates the role of SH protein of JPV in pathogenesis in its natural host. Understanding the pathogenic mechanism of Jeilongvirus is important to control and prevent potential diseases that may emerge from this group of viruses.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Infecciones por Paramyxoviridae/patología , Paramyxoviridae/crecimiento & desarrollo , Proteínas Oncogénicas de Retroviridae/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factores de Virulencia/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Ratones , Viabilidad Microbiana , Virus de la Parotiditis/genética , Virus de la Parotiditis/fisiología , Infecciones por Paramyxoviridae/virología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/fisiología , Proteínas Oncogénicas de Retroviridae/genética , Virulencia , Factores de Virulencia/genética
8.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28747496

RESUMEN

Human respiratory syncytial virus (RSV) is the leading cause of pediatric bronchiolitis and hospitalizations. RSV can also cause severe complications in elderly and immunocompromised individuals. There is no licensed vaccine. We previously generated a parainfluenza virus 5 (PIV5)-vectored vaccine candidate expressing the RSV fusion protein (F) that was immunogenic and protective in mice. In this work, our goal was to improve the original vaccine candidate by modifying the PIV5 vector or by modifying the RSV F antigen. We previously demonstrated that insertion of a foreign gene at the PIV5 small hydrophobic (SH)-hemagglutinin-neuraminidase (HN) junction or deletion of PIV5 SH increased vaccine efficacy. Additionally, other groups have demonstrated that antibodies against the prefusion conformation of RSV F have more potent neutralizing activity than antibodies against the postfusion conformation. Therefore, to improve on our previously developed vaccine candidate, we inserted RSV F at the PIV5 SH-HN gene junction or used RSV F to replace PIV5 SH. We also engineered PIV5 to express a prefusion-stabilized F mutant. The candidates were tested in BALB/c mice via the intranasal route and induced both humoral and cell-mediated immunity. They also protected against RSV infection in the mouse lung. When they were administered intranasally or subcutaneously in cotton rats, the candidates were highly immunogenic and reduced RSV loads in both the upper and lower respiratory tracts. PIV5-RSV F was equally protective when administered intranasally or subcutaneously. In all cases, the prefusion F mutant did not induce higher neutralizing antibody titers than wild-type F. These results show that antibodies against both pre- and postfusion F are important for neutralizing RSV and should be considered when designing a vectored RSV vaccine. The findings also that indicate PIV5-RSV F may be administered subcutaneously, which is the preferred route for vaccinating infants, who may develop nasal congestion as a result of intranasal vaccination.IMPORTANCE Despite decades of research, human respiratory syncytial virus (RSV) is still a major health concern for which there is no vaccine. A parainfluenza virus 5-vectored vaccine expressing the native RSV fusion protein (F) has previously been shown to confer robust immunity against RSV infection in mice, cotton rats, and nonhuman primates. To improve our previous vaccine candidate, we developed four new candidates that incorporate modifications to the PIV5 backbone, replace native RSV F with a prefusion-stabilized RSV F mutant, or combine both RSV F and PIV5 backbone modifications. In this work, we characterized the new vaccine candidates and tested their efficacies in both murine and cotton rat models of RSV infection. Most importantly, we found that PIV5-based RSV vaccine candidates were efficacious in preventing lower respiratory tract infection as well as in reducing the nasal viral load when administered via the subcutaneous route.


Asunto(s)
Virus de la Parainfluenza 5/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/inmunología , Administración Intranasal , Animales , Chlorocebus aethiops , Femenino , Proteína HN/genética , Proteína HN/inmunología , Humanos , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos BALB C , Virus de la Parainfluenza 5/genética , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Virus Sincitial Respiratorio Humano/genética , Sigmodontinae , Células Vero , Proteínas Virales de Fusión/genética
9.
J Virol ; 90(3): 1588-98, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608325

RESUMEN

UNLABELLED: The viral RNA-dependent RNA polymerases (vRdRps) of nonsegmented, negative-sense viruses (NNSVs) consist of the enzymatic large protein (L) and the phosphoprotein (P). P is heavily phosphorylated, and its phosphorylation plays a critical role in viral RNA synthesis. Since NNSVs do not encode kinases, P is phosphorylated by host kinases. In this study, we investigate the roles that viral proteins play in the phosphorylation of mumps virus (MuV) P. We found that nucleoprotein (NP) enhances the phosphorylation of P. We have identified the serine/threonine kinase Polo-like kinase 1 (PLK1) as a host kinase that phosphorylates P and have found that phosphorylation of P by PLK1 is enhanced by NP. The PLK1 binding site in MuV P was mapped to residues 146 to 148 within the S(pS/T)P motif, and the phosphorylation site was identified as residues S292 and S294. IMPORTANCE: It has previously been shown that P acts as a chaperone for NP, which encapsidates viral genomic RNA to form the NP-RNA complex, the functional template for viral RNA synthesis. Thus, it is assumed that phosphorylation of P may regulate NP's ability to form the NP-RNA complex, thereby regulating viral RNA synthesis. Our work demonstrates that MuV NP affects phosphorylation of P, suggesting that NP can regulate viral RNA synthesis by regulating phosphorylation of P.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Interacciones Huésped-Patógeno , Virus de la Parotiditis/fisiología , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Virales/metabolismo , Animales , Sitios de Unión , Línea Celular , Humanos , Fosforilación , Mapeo de Interacción de Proteínas , Quinasa Tipo Polo 1
10.
J Virol ; 90(22): 10113-10119, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27581981

RESUMEN

In a negative-strand RNA virus, the genomic RNA is sequestered inside the nucleocapsid when the viral RNA-dependent RNA polymerase uses it as the template for viral RNA synthesis. It must require a conformational change in the nucleocapsid protein (N) to make the RNA accessible to the viral polymerase during this process. The structure of an empty mumps virus (MuV) nucleocapsid-like particle was determined to 10.4-Å resolution by cryo-electron microscopy (cryo-EM) image reconstruction. By modeling the crystal structure of parainfluenza virus 5 into the density, it was shown that the α-helix close to the RNA became flexible when RNA was removed. Point mutations in this helix resulted in loss of polymerase activities. Since the core of N is rigid in the nucleocapsid, we suggest that interactions between this region of the mumps virus N and its polymerase, instead of large N domain rotations, lead to exposure of the sequestered genomic RNA. IMPORTANCE Mumps virus (MuV) infection may cause serious diseases, including hearing loss, orchitis, oophoritis, mastitis, and pancreatitis. MuV is a negative-strand RNA virus, similar to rabies virus or Ebola virus, that has a unique mechanism of viral RNA synthesis. They all make their own RNA-dependent RNA polymerase (RdRp). The viral RdRp uses the genomic RNA inside the viral nucleocapsid as the template to synthesize viral RNAs. Since the template RNA is always sequestered in the nucleocapsid, the viral RdRp must find a way to open it up in order to gain access to the covered template. Our work reported here shows that a helix structural element in the MuV nucleocapsid protein becomes open when the sequestered RNA is released. The amino acids related to this helix are required for RdRp to synthesize viral RNA. We propose that the viral RdRp pulls this helix open to release the genomic RNA.

11.
J Virol ; 89(14): 7338-47, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25948749

RESUMEN

UNLABELLED: Mumps virus (MuV) is a paramyxovirus with a negative-sense nonsegmented RNA genome. The viral RNA genome is encapsidated by the nucleocapsid protein (NP) to form the ribonucleoprotein (RNP), which serves as a template for transcription and replication. In this study, we investigated the roles of phosphorylation sites of NP in MuV RNA synthesis. Using radioactive labeling, we first demonstrated that NP was phosphorylated in MuV-infected cells. Using both liquid chromatography-mass spectrometry (LC-MS) and in silico modeling, we identified nine putative phosphorylated residues within NP. We mutated these nine residues to alanine. Mutation of the serine residue at position 439 to alanine (S439A) was found to reduce the phosphorylation of NP in transfected cells by over 90%. The effects of these mutations on the MuV minigenome system were examined. The S439A mutant was found to have higher activity, four mutants had lower activity, and four mutants had similar activity compared to wild-type NP. MuV containing the S439A mutation had 90% reduced phosphorylation of NP and enhanced viral RNA synthesis and viral protein expression at early time points after infection, indicating that S439 is the major phosphorylation site of NP and its phosphorylation plays an important role in downregulating viral RNA synthesis. IMPORTANCE: Mumps virus (MuV), a paramyxovirus, is an important human pathogen that is reemerging in human populations. Nucleocapsid protein (NP) of MuV is essential for viral RNA synthesis. We have identified the major phosphorylation site of NP. We have found that phosphorylation of NP plays a critical role in regulating viral RNA synthesis. The work will lead to a better understanding of viral RNA synthesis and possible novel targets for antiviral drug development.


Asunto(s)
Virus de la Parotiditis/fisiología , Proteínas de la Nucleocápside/metabolismo , ARN Viral/biosíntesis , Transcripción Genética , Replicación Viral , Animales , Línea Celular , Cromatografía Liquida , Análisis Mutacional de ADN , Células Epiteliales/virología , Humanos , Espectrometría de Masas , Modelos Moleculares , Virus de la Parotiditis/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Procesamiento Proteico-Postraduccional
12.
J Virol ; 89(23): 11845-57, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26378167

RESUMEN

UNLABELLED: Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE: We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs.


Asunto(s)
Virus de la Parainfluenza 5/genética , ARN Viral/biosíntesis , Proteínas Virales/metabolismo , Western Blotting , Cartilla de ADN/genética , Células HEK293 , Humanos , Inmunoprecipitación , Microscopía Confocal , Proteínas de la Nucleocápside/metabolismo , Virus de la Parainfluenza 5/fisiología , ARN Viral/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
J Virol ; 89(3): 1652-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410860

RESUMEN

UNLABELLED: Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. IMPORTANCE: Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and protected mice and ferrets against homologous and heterologous EIV.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Protección Cruzada , Reacciones Cruzadas , Modelos Animales de Enfermedad , Hurones , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
14.
J Virol ; 89(13): 6907-17, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25903333

RESUMEN

UNLABELLED: H3N8 influenza viruses are a commonly found subtype in wild birds, usually causing mild or no disease in infected birds. However, they have crossed the species barrier and have been associated with outbreaks in dogs, pigs, donkeys, and seals and therefore pose a threat to humans. A live attenuated, cold-adapted (ca) H3N8 vaccine virus was generated by reverse genetics using the wild-type (wt) hemagglutinin (HA) and neuraminidase (NA) genes from the A/blue-winged teal/Texas/Sg-00079/2007 (H3N8) (tl/TX/079/07) wt virus and the six internal protein gene segments from the ca influenza A virus vaccine donor strain, A/Ann Arbor/6/60 ca (H2N2), the backbone of the licensed seasonal live attenuated influenza vaccine. One dose of the tl/TX/079/07 ca vaccine induced a robust neutralizing antibody response against the homologous (tl/TX/079/07) and two heterologous influenza viruses, including the recently emerged A/harbor seal/New Hampshire/179629/2011 (H3N8) and A/northern pintail/Alaska/44228-129/2006 (H3N8) viruses, and conferred robust protection against the homologous and heterologous influenza viruses. We also analyzed human sera against the tl/TX/079/07 H3N8 avian influenza virus and observed low but detectable antibody reactivity in elderly subjects, suggesting that older H3N2 influenza viruses confer some cross-reactive antibody. The latter observation was confirmed in a ferret study. The safety, immunogenicity, and efficacy of the tl/TX/079/07 ca vaccine in mice and ferrets support further evaluation of this vaccine in humans for use in the event of transmission of an H3N8 avian influenza virus to humans. The human and ferret serology data suggest that a single dose of the vaccine may be sufficient in older subjects. IMPORTANCE: Although natural infection of humans with an avian H3N8 influenza virus has not yet been reported, this influenza virus subtype has already crossed the species barrier and productively infected mammals. Pandemic preparedness is an important public health priority. Therefore, we generated a live attenuated avian H3N8 vaccine candidate and demonstrated that a single dose of the vaccine was highly immunogenic and protected mice and ferrets against homologous and heterologous H3N8 avian viruses.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunación/métodos , Adolescente , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Antivirales/sangre , Perros , Femenino , Hurones , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/aislamiento & purificación , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Recombinación Genética , Genética Inversa , Adulto Joven
15.
J Virol ; 88(8): 4414-22, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24501400

RESUMEN

UNLABELLED: Mumps virus (MuV), a paramyxovirus containing a negative-sense nonsegmented RNA genome, is a human pathogen that causes an acute infection with symptoms ranging from parotitis to mild meningitis and severe encephalitis. Vaccination against mumps virus has been effective in reducing mumps cases. However, recently large outbreaks have occurred in vaccinated populations. There is no anti-MuV drug. Understanding replication of MuV may lead to novel antiviral strategies. MuV RNA-dependent RNA polymerase minimally consists of the phosphoprotein (P) and the large protein (L). The P protein is heavily phosphorylated. To investigate the roles of serine (S) and threonine (T) residues of P in viral RNA transcription and replication, P was subjected to mass spectrometry and mutational analysis. P, a 392-amino acid residue protein, has 64 S and T residues. We have found that mutating nine S/T residues significantly reduced and mutating residue T at 101 to A (T101A) significantly enhanced activity in a minigenome system. A recombinant virus containing the P-T101A mutation (rMuV-P-T101A) was recovered and analyzed. rMuV-P-T101A grew to higher titers and had increased protein expression at early time points. Together, these results suggest that phosphorylation of MuV-P-T101 plays a negative role in viral RNA synthesis. This is the first time that the P protein of a paramyxovirus has been systematically analyzed for S/T residues that are critical for viral RNA synthesis. IMPORTANCE: Mumps virus (MuV) is a reemerging paramyxovirus that caused large outbreaks in the United States, where vaccination coverage is very high. There is no anti-MuV drug. In this work, we have systematically analyzed roles of Ser/Thr residues of MuV P in viral RNA synthesis. We have identified S/T residues of P critical for MuV RNA synthesis and phosphorylation sites that are important for viral RNA synthesis. This work leads to a better understanding of viral RNA synthesis as well as to potential novel strategies to control mumps.


Asunto(s)
Regulación Viral de la Expresión Génica , Virus de la Parotiditis/fisiología , Paperas/virología , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Virus de la Parotiditis/química , Virus de la Parotiditis/genética , Fosfoproteínas/genética , ARN Viral/genética , ARN Viral/metabolismo , Treonina/genética , Treonina/metabolismo , Transcripción Genética , Proteínas Virales/genética
16.
J Virol ; 87(12): 6901-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576512

RESUMEN

Since it is difficult to predict which influenza virus subtype will cause an influenza pandemic, it is important to prepare influenza virus vaccines against different subtypes and evaluate the safety and immunogenicity of candidate vaccines in preclinical and clinical studies prior to a pandemic. In addition to infecting humans, H3 influenza viruses commonly infect pigs, horses, and avian species. We selected 11 swine, equine, and avian H3 influenza viruses and evaluated their kinetics of replication and ability to induce a broadly cross-reactive antibody response in mice and ferrets. The swine and equine viruses replicated well in the upper respiratory tract of mice. With the exception of one avian virus that replicated poorly in the lower respiratory tract, all of the viruses replicated in mouse lungs. In ferrets, all of the viruses replicated well in the upper respiratory tract, but the equine viruses replicated poorly in the lungs. Extrapulmonary spread was not observed in either mice or ferrets. No single virus elicited antibodies that cross-reacted with viruses from all three animal sources. Avian and equine H3 viruses elicited broadly cross-reactive antibodies against heterologous viruses isolated from the same or other species, but the swine viruses did not. We selected an equine and an avian H3 influenza virus for further development as vaccines.


Asunto(s)
Anticuerpos Antivirales/sangre , Hurones/virología , Virus de la Influenza A/clasificación , Virus de la Influenza A/inmunología , Ratones/virología , Infecciones por Orthomyxoviridae/mortalidad , Replicación Viral , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Aves/virología , Reacciones Cruzadas , Femenino , Hurones/inmunología , Caballos/virología , Virus de la Influenza A/fisiología , Ratones/inmunología , Ratones Endogámicos BALB C , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Porcinos/virología
17.
J Infect Dis ; 208(4): 594-602, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23656978

RESUMEN

The humoral and cellular immune responses elicited by the trivalent live attenuated influenza vaccine (LAIV) and the trivalent inactivated influenza vaccine (TIV) were evaluated in the ferret model, using newly developed ferret immunological reagents and assays. In contrast to the TIV, which only induced immune responses in primed animals, LAIV induced strong influenza virus-specific serum antibody and T-cell responses in both naive and influenza-seropositive animals. The LAIV offered significant protection against a heterologous H1N1 virus challenge infection in the upper respiratory tract. Influenza virus-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) antibody-secreting cells (ASCs) and influenza virus-specific CD4(+) and CD8(+) T cells were detected in the circulation and local paratracheal draining lymph nodes. The frequency of the influenza-specific ASCs in the local lymph nodes appeared to correlate with the degree of protection in the upper respiratory tract. The protection conferred by the LAIV could be attributed not only to the antibody response but also to the cell-mediated and local mucosal immune responses, particularly in naive ferrets. These findings may explain why the LAIV is immunologically superior and offers immediate protection after a single dose in children.


Asunto(s)
Anticuerpos Antivirales/sangre , Células Productoras de Anticuerpos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Animales , Modelos Animales de Enfermedad , Hurones , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Ganglios Linfáticos/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
18.
Nat Commun ; 15(1): 3469, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658526

RESUMEN

Human parechoviruses (PeV-A) are increasingly being recognized as a cause of infection in neonates and young infants, leading to a spectrum of clinical manifestations ranging from mild gastrointestinal and respiratory illnesses to severe sepsis and meningitis. However, the host factors required for parechovirus entry and infection remain poorly characterized. Here, using genome-wide CRISPR/Cas9 loss-of-function screens, we identify myeloid-associated differentiation marker (MYADM) as a host factor essential for the entry of several human parechovirus genotypes including PeV-A1, PeV-A2 and PeV-A3. Genetic knockout of MYADM confers resistance to PeV-A infection in cell lines and in human gastrointestinal epithelial organoids. Using immunoprecipitation, we show that MYADM binds to PeV-A1 particles via its fourth extracellular loop, and we identify critical amino acid residues within the loop that mediate binding and infection. The demonstrated interaction between MYADM and PeV-A1, and its importance specifically for viral entry, suggest that MYADM is a virus receptor. Knockout of MYADM does not reduce PeV-A1 attachment to cells pointing to a role at the post-attachment stage. Our study suggests that MYADM is a multi-genotype receptor for human parechoviruses with potential as an antiviral target to combat disease associated with emerging parechoviruses.


Asunto(s)
Parechovirus , Infecciones por Picornaviridae , Internalización del Virus , Humanos , Línea Celular , Sistemas CRISPR-Cas , Células HEK293 , Organoides/virología , Organoides/metabolismo , Parechovirus/genética , Parechovirus/metabolismo , Infecciones por Picornaviridae/virología , Infecciones por Picornaviridae/metabolismo , Unión Proteica , Receptores Virales/metabolismo , Receptores Virales/genética
19.
Cell Rep Methods ; 3(7): 100503, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37529368

RESUMEN

We demonstrate that integrative analysis of CRISPR screening datasets enables network-based prioritization of prescription drugs modulating viral entry in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by developing a network-based approach called Rapid proXimity Guidance for Repurposing Investigational Drugs (RxGRID). We use our results to guide a propensity-score-matched, retrospective cohort study of 64,349 COVID-19 patients, showing that a top candidate drug, spironolactone, is associated with improved clinical prognosis, measured by intensive care unit (ICU) admission and mechanical ventilation rates. Finally, we show that spironolactone exerts a dose-dependent inhibitory effect on viral entry in human lung epithelial cells. Our RxGRID method presents a computational framework, implemented as an open-source software package, enabling genomics researchers to identify drugs likely to modulate a molecular phenotype of interest based on high-throughput screening data. Our results, derived from this method and supported by experimental and clinical analysis, add additional supporting evidence for a potential protective role of the potassium-sparing diuretic spironolactone in severe COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Espironolactona/farmacología , Estudios Retrospectivos , Genómica
20.
Science ; 378(6615): eabn5648, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36074821

RESUMEN

Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII). Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional GlcNAc-1-phosphotransferase. We used genome-scale CRISPR screens to identify lysosomal enzyme trafficking factor (LYSET, also named TMEM251) as essential for infection by cathepsin-dependent viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). LYSET deficiency resulted in global loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes. Lyset knockout mice exhibited MLII-like phenotypes, and human pathogenic LYSET alleles failed to restore lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P trafficking machinery and mutations in LYSET can explain the phenotype of the associated disorder.


Asunto(s)
COVID-19 , Lisosomas , Mucolipidosis , Proteínas , Animales , COVID-19/genética , Catepsinas/metabolismo , Humanos , Lisosomas/metabolismo , Manosa/metabolismo , Ratones , Ratones Noqueados , Mucolipidosis/genética , Mucolipidosis/metabolismo , Proteínas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA