Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 204: 106097, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277421

RESUMEN

Insect growth-blocking peptides (GBPs) are a family of cytokines found in several insect orders and are known for their roles in regulating development, paralysis, cell proliferation, and immune responses. Despite their diverse functions, the potential of GBPs as biocontrol targets against the pest Spodoptera frugiperda (Lepidoptera: Noctuidae) has not been fully explored. In this study, S. frugiperda GBP (SfGBP) was identified and functionally characterized. SfGBP is synthesized as a 146 amino acid proprotein with a 24 amino acid C-terminal active peptide (Glu123-Gly146). Predominant expression of SfGBP occurs in fourth to sixth instar larvae and in the larval fat body, with significant upregulation in response to pathogens and pathogen-associated molecular patterns. Injection of the synthetic active peptide into larvae induced growth retardation, delayed pupation, and increased survival against Beauveria bassiana infection. Conversely, RNA interference-mediated knockdown of SfGBP resulted in accelerated growth, earlier pupation, and decreased survival against B. bassiana infection. Further analysis revealed that SfGBP promoted SF9 cell proliferation and spreading, enhanced bacteriostatic activity of larval hemolymph, and directly inhibited germination of B. bassiana conidia. In addition, SfGBP enhanced humoral responses, such as upregulation of immunity-related genes and generation of reactive oxygen species, and cellular responses, such as nodulation, phagocytosis, and encapsulation. These results highlight the dual regulatory role of SfGBP in development and immune responses and establish it as a promising biocontrol target for the management of S. frugiperda.


Asunto(s)
Proteínas de Insectos , Larva , Spodoptera , Animales , Spodoptera/efectos de los fármacos , Spodoptera/inmunología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Larva/inmunología , Beauveria/fisiología , Secuencia de Aminoácidos , Control Biológico de Vectores/métodos
2.
Pestic Biochem Physiol ; 202: 105936, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879328

RESUMEN

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.


Asunto(s)
Beauveria , Beauveria/patogenicidad , Beauveria/genética , Beauveria/fisiología , Animales , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Spodoptera/microbiología , Esporas Fúngicas , Larva/microbiología , Serina Proteasas/metabolismo , Serina Proteasas/genética , Control Biológico de Vectores , Fusarium/patogenicidad , Fusarium/genética
3.
Arch Insect Biochem Physiol ; 98(1): e21455, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29532954

RESUMEN

The small white butterfly, Pieris rapae (Lepidoptera: Pieridae), is an important pest on Brassicaceae plants, causing heavy crop loss each year. Cytochrome P450 monooxygenase (CYP) is a superfamily of enzymes involved in the detoxification of various xenobiotic compounds, including insecticides. However, little is known about the role of CYP genes in P. rapae. In this study, we identified 63 CYP genes in P. rapae, and analyzed their phylogenetic relationships, exon-intron structures and genomic locations. Moreover, our insecticide-response transcription profiling showed that LD5 doses of lambda-cyhalothrin, chlorantraniliprole, and abamectin significantly increased expression of five (CYP4M59, CYP6AE119, CYP6AE120, CYP6AE121, and CYP6BD18), three (CYP4AU1, CYP6AE120, and CYP6AW1), and five (CYP4L40, CYP4AU1, CYP6AE119, CYP6AW1, and CYP6BD19) CYP genes, respectively; and LD20 doses of the three pesticides significantly upregulated six (CYP4M59, CYP6AE119, CYP6AE120, CYP6AE121, CYP4AU1, and CYP6BD18), six (CYP4G168, CYP4L40, CYP4AU1, CYP6AE120, CYP6AW1, and CYP6BD19), and five (CYP4L40, CYP4AU1, CYP6AB108, CYP6AE119, and CYP6BD19) genes, respectively. When we used LD50 doses of the three insecticides, we reported significantly elevated expression levels of five (CYP4M59, CYP6AE119, CYP6AE120, CYP6BD17, and CYP6BD18), eight (CYP4G168, CYP4L40, CYP4AU1, CYP6AE120, CYP6AE121, CYP6AW1, CYP6BD18, and CYP6BD19), and six (CYP4L40, CYP4S34, CYP6AB108, CYP6AE119, CYP6AE120, and CYP6BD19) genes, respectively. Our expression analysis also revealed that five (CYP4G168, CYP4G169, CYP4S34, CYP6AW1, and CYP6CT3) and three (CYP4L40, CYP6AN33, and CYP6BD17) CYP genes were mainly expressed in the midgut and fat body, respectively, and one CYP gene (CYP6AE119) in the Malpighian tubules. This is the first large-scale report into the characterization of CYP genes in P. rapae.


Asunto(s)
Mariposas Diurnas/enzimología , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Insecticidas/farmacología , Animales , Mariposas Diurnas/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Expresión Génica , Proteínas de Insectos/metabolismo , Larva/efectos de los fármacos , Larva/enzimología , Dosificación Letal Mediana , Masculino , Filogenia
4.
Pestic Biochem Physiol ; 143: 102-110, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29183577

RESUMEN

Insect glutathione S-transferases (GSTs) play essential roles in the detoxification of insecticides and other xenobiotic compounds. The cabbage white butterfly, Pieris rapae, is an economically important agricultural pest. In this study, 17 cDNA sequences encoding putative GSTs were identified in P. rapae. All cDNAs include a complete open reading frame and were designated PrGSTd1-PrGSTz2. Based on phylogenetic analysis, PrGSTs were divided into six classes (delta, epsilon, omega, sigma, theta and zeta). The exon-intron organizations of these PrGSTs were also analysed. Recombinant proteins of eight PrGSTs (PrGSTD1, PrGSTD2, PrGSTE1, PrGSTE2, PrGSTO1, PrGSTS1, PrGSTT1 and PrGSTZ1) were heterologously expressed in Escherichia coli, and all of these proteins displayed glutathione-conjugating activity towards 1-chloro-2,4-dinitrobenzene (CDNB). Expression patterns in various larval tissues, at different life stages, and following exposure to sublethal doses of abamectin, chlorantraniliprole or lambda-cyhalothrin were determined by reverse transcription-quantitative PCR. The results showed that PrGSTe3, PrGSTs1, PrGSTs2, and PrGSTs4 were mainly transcribed in the fat body, while PrGSTe2 was expressed predominantly in the Malpighian tubules. Four genes (PrGSTe2, PrGSTo4, PrGSTs4 and PrGSTt1) were mainly expressed in fourth-instar larvae, while others were ubiquitously expressed in egg, larval, pupa and/or adult stages. Abamectin treatment significantly upregulated ten genes (PrGSTd1, PrGSTd3, PrGSTe1, PrGSTe2, PrGSTo1, PrGSTo3, PrGSTs1, PrGSTs3, PrGSTs4 and PrGSTt1). Chlorantraniliprole and lambda-cyhalothrin treatment significantly upregulated nine genes (PrGSTd1, PrGSTd2, PrGSTe1, PrGSTe2, PrGSTe3, PrGSTs1, PrGSTs3, PrGSTs4 and PrGSTz1) and ten genes (PrGSTd1, PrGSTd3, PrGSTe1, PrGSTe2, PrGSTo1, PrGSTo2, PrGSTs1, PrGSTs2, PrGSTs3 and PrGSTz2), respectively. These GSTs are potentially involved in the detoxification of insecticides.


Asunto(s)
Mariposas Diurnas/genética , Glutatión Transferasa/genética , Proteínas de Insectos/genética , Animales , Mariposas Diurnas/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Insecticidas/toxicidad , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Masculino , Nitrilos/toxicidad , Filogenia , Piretrinas/toxicidad , ortoaminobenzoatos/toxicidad
5.
Arch Insect Biochem Physiol ; 93(3): 129-142, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27447944

RESUMEN

In this study, two full-length cDNA sequences (Cmace1 and Cmace2) encoding putative acetylcholinesterases (AChEs) were cloned and characterized from the rice leaffolder, Cnaphalocrocis medinalis, an important lepidopteran rice pest in Asia. Cmace1 encodes a CmAChE1 consisting of 689 amino acid residues, while Cmace2 encodes a 639 amino acids CmAChE2. The two CmAChEs both have N-terminal signal peptides and conserved motifs including the catalytic triad, choline-binding sites, oxianion hole, acyl pocket, peripheral anionic subsite, and the characteristic FGESAG motif and conserved 14 aromatic amino acids. Phylogenetic analysis showed that Cmace1 and Cmace2 are clustered into distinct clusters that are completely diverged from each other. Reverse-transcription quantitative PCR analysis revealed that Cmace1 and Cmace2 were predominately expressed in the larval brain and at the fifth-instar larvae stage, and the transcription levels of Cmace1 were significantly higher than those of Cmace2 in all the tested samples. Recombinant CmAChE1 and CmAChE2 were heterologously expressed in baculovirus system. Using acetylthiocholine iodide (ATChI) as substrate, the Michaelis constant (Km ) values of rCmAChE1 and rCmAChE2 were 39.81 ± 6.49 and 68.29 ± 6.72 µmol/l, respectively; and the maximum velocity (Vmax ) values of the two rCmAChEs were 0.60 ± 0.02 and 0.31 ± 0.06 µmol/min/mg protein, respectively. Inhibition assay indicated that rCmAChE1 was more sensitive to the organophosphate insecticides chlorpyrifos and triazophos than rCmAChE2. This study is the first report of molecular cloning and biochemical characterization of two acetylcholinesterase genes/enzymes in C. medinalis.


Asunto(s)
Acetilcolinesterasa/genética , Proteínas de Insectos/genética , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/genética , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
6.
Dev Comp Immunol ; 154: 105142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309673

RESUMEN

The fall armyworm, Spodoptera frugiperda, poses a significant threat as a highly destructive agricultural pest in many countries. Understanding the complex interplay between the insect immune system and entomopathogens is critical for optimizing biopesticide efficacy. In this study, we identified a novel microbial binding protein, SfMBP, in S. frugiperda. However, the specific role of SfMBP in the immune response of S. frugiperda remains elusive. Encoded by the LOC118269163 gene, SfMBP shows significant induction in S. frugiperda larvae infected with the entomopathogen Beauveria bassiana. Consisting of 115 amino acids with a signal peptide, an N-terminal flexible region and a C-terminal ß-sheet, SfMBP lacks any known functional domains. It is expressed predominantly during early larval stages and in the larval epidermis. Notably, SfMBP is significantly induced in larvae infected with bacteria and fungi and in SF9 cells stimulated by peptidoglycan. While recombinant SfMBP (rSfMBP) does not inhibit bacterial growth, it demonstrates binding capabilities to bacteria, fungal spores, peptidoglycan, lipopolysaccharides, and polysaccharides. This binding is inhibited by monosaccharides and EDTA. Molecular docking reveals potential Zn2+-interacting residues and three cavities. Furthermore, rSfMBP induces bacterial agglutination in the presence of Zn2+. It also binds to insect hemocytes and SF9 cells, enhancing phagocytosis and agglutination responses. Injection of rSfMBP increased the survival of S. frugiperda larvae infected with B. bassiana, whereas blocking SfMBP with the antibody decreased survival. These results suggest that SfMBP acts as a pattern recognition receptor that enhances pathogen recognition and cellular immune responses. Consequently, this study provides valuable insights for the development of pest control measures.


Asunto(s)
Proteínas Portadoras , Mariposas Nocturnas , Animales , Spodoptera/fisiología , Proteínas Portadoras/metabolismo , Simulación del Acoplamiento Molecular , Peptidoglicano/metabolismo , Mariposas Nocturnas/metabolismo , Larva/metabolismo , Insectos/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo
7.
J Econ Entomol ; 116(5): 1862-1875, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37540584

RESUMEN

C-type lectins (CTLs) are an important family of pattern recognition receptors (PRRs) that regulate immune responses. The CTL5 gene of the silkworm Bombyx mori L. (Lepidoptera: Bombycidae) encodes a protein comprised of 223 amino acids, containing a signal peptide and a carbohydrate recognition domain (CRD). Our previous study showed that CTL5 can facilitate the clearance of bacteria from larval hemocoel but the underlying mechanisms are unclear. In this study, we found that CTL5 was mainly expressed in fourth-instar larvae, adult moths, and the larval epidermis. CTL5 expression showed differential responses to both pathogenic stimuli and the molting hormone 20-hydroxyecdysone. The full-length (FL) and truncated (ΔN/ΔC/ΔNC) CTL5 recombinant proteins can bind to hemocytes, polysaccharides, bacteria, and spores of the entomopathogenic fungus Beauveria bassiana. Yeast 2-hybrid assays showed that the recombinant proteins can interact with integrin ß2-ß5 subunits. Recombinant proteins increased the phagocytic rate of hemocytes. Injection of recombinant CTL5 stimulated the expression of many immune genes in hemocytes, mainly antimicrobial peptides and immune signaling molecules. Additionally, transcriptomic sequencing of CTL5-stimulated hemocytes revealed 265 upregulated and 580 downregulated genes. Functional enrichment and the gene set enrichment analyses showed that differentially expressed genes were mainly enriched in innate immune responses and signaling. Our study suggests that CTL5 may act as an opsonin to enhance the clearance of pathogens by regulating both humoral and cellular responses.

8.
Pest Manag Sci ; 79(8): 2762-2779, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36914429

RESUMEN

BACKGROUND: The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) can infest over 300 plant species and cause huge economic losses. Beauveria bassiana (Hypocreales: Clavicipitaceae) is one of the most widely used entomopathogenic fungi (EPF). Unfortunately, the efficacy of B. bassiana against S. frugiperda is quite low. Hypervirulent EPF isolates can be obtained by ultraviolet (UV)-irradiation. Here we report on the UV-induced mutagenesis and transcriptomic analysis of B. bassiana. RESULTS: The wild-type (WT) B. bassiana (ARSEF2860) was exposed to UV light to induce mutagenesis. Two mutants (named 6M and 8M) showed higher growth rates, conidial yields, and germination rates compared to the WT strain. The mutants showed higher levels of tolerance to osmotic, oxidative, and UV stresses. The mutants showed higher protease, chitinase, cellulose, and chitinase activities than WT. Both WT and mutants were compatible with the insecticides matrine, spinetoram, and chlorantraniliprole, but incompatible with emamectin benzoate. Insect bioassays showed that both mutants were more virulent against S. frugiperda and the greater wax moth Galleria mellonella. Transcriptomic profiles of the WT and mutants were determined by RNA-sequencing. The differentially expressed genes (DEGs) were identified. The gene set enrichment analysis (GSEA), protein-protein interaction (PPI) network, and hub gene analysis revealed virulence-related genes. CONCLUSION: Our data demonstrate that UV-irradiation is a very efficient and economical technique to improve the virulence and stress resistance of B. bassiana. Comparative transcriptomic profiles of the mutants provide insights into virulence genes. These results provide new ideas for improving the genetic engineering and field efficacy of EPF. © 2023 Society of Chemical Industry.


Asunto(s)
Beauveria , Hypocreales , Mariposas Nocturnas , Animales , Hypocreales/genética , Beauveria/genética , Transcriptoma , Mariposas Nocturnas/genética , Mutagénesis
9.
J Agric Food Chem ; 71(34): 12757-12774, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37602431

RESUMEN

Insect pests and phytopathogens significantly impact crop yield and quality. The fall armyworm (FAW) Spodoptera frugiperda and the phytopathogen Fusarium graminearum cause substantial economic losses in crops like barley and wheat. However, the entomopathogen Beauveria bassiana shows limited efficacy against FAW, and its antiphytopathogenic activities against F. graminearum remain unclear. Here, dual RNA sequencing was performed to identify differentially expressed genes in B. bassiana-infected FAW larvae. We found that the BbAorsin gene was significantly upregulated at 36 and 48 h post-infection. BbAorsin encodes a serine-carboxyl protease and is mainly expressed in blastospores and hyphae. Overexpression of BbAorsin in B. bassiana ARSEF2860 enhanced virulence against Galleria mellonella and FAW larvae and inhibited F. graminearum growth. The recombinant BbAorsin protein induced apoptosis and necrosis in FAW hemocytes and inhibited F. graminearum spore germination. These findings shed light on transcriptomic mechanisms governing insect-pathogen interactions, which could aid in developing dual-functional entomopathogens and anti-phytopathogens.


Asunto(s)
Beauveria , Péptido Hidrolasas , Animales , Péptido Hidrolasas/genética , Spodoptera/genética , Beauveria/genética , Secuencia de Bases , Serina Endopeptidasas , Larva/genética
10.
Pest Manag Sci ; 78(11): 4517-4532, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35810341

RESUMEN

BACKGROUND: Chlorantraniliprole (CAP) is an efficient anthranilic diamide insecticide against economically important pests such as the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Resistance to CAP may develop due to enhanced enzymatic detoxification. The glutathione S-transferase (GST) superfamily in M. separata has not been systematically characterized. The aim of this study was therefore to explore the effects of lethal and sublethal doses of CAP on M. separata larvae, screen differentially expressed genes (DEGs) responding to CAP exposure, identify and characterize the GST superfamily, and analyze the metabolism of CAP by recombinant GSTs. RESULTS: The toxicity bioassay showed that CAP was active against M. separata third-instar larvae. LC50 was 17.615, 3.127, and 1.336 mg/L after 24, 48, and 72 h, respectively. Poisoned larvae showed contracted somites and disrupted midgut. Total GST activity in larvae was significantly elevated 24 h after CAP exposure. RNA-sequencing generated 43 055 unigenes with an average length of 1010 bp, and 567 up-regulated and 692 down-regulated DEGs responding to CAP treatment were screened. Thirty-five GST genes were identified from unigenes, including 31 cytosolic, three microsomal, and one unclassified. The expression profile of GST genes was analyzed using samples from different developmental stages, adult tissues, and CAP treatments. Metabolic assays indicated that CAP was depleted by recombinant MseGSTe2 and MseGSTs6. CONCLUSIONS: This study provides insight into the toxicological and transcriptomic effects in M. separata larvae exposed to CAP. The identification and functional characterization of the GST superfamily will improve our understanding of CAP detoxification by GSTs. © 2022 Society of Chemical Industry.


Asunto(s)
Insecticidas , Lepidópteros , Mariposas Nocturnas , Animales , Diamida/farmacología , Glutatión , Glutatión Transferasa/genética , Insecticidas/farmacología , Larva/genética , Mariposas Nocturnas/genética , ARN/farmacología , Transcriptoma , ortoaminobenzoatos
11.
J Econ Entomol ; 115(2): 462-473, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35089348

RESUMEN

Eco-friendly entomopathogenic fungi are widely used to control agricultural insect pests. Purpureocillium lilacinum (Thom.) Luangsa-ard et al. (Hypocreales: Ophiocordycipitaceae) is a nematophagous fungus used for the bio-control of destructive root-knot nematodes. However, its insecticidal activities against agricultural insect pests haven't been widely studied. In this study, P. lilacinum PL-1 was isolated from soil (Hefei, China) and identified by molecular and morphological analyses. The growth rate, spore production, proteinase, and chitinase activities of the isolate were analyzed. Virulence tests against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) and fall armyworm (FAW), Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) were performed. The median lethal concentration (LC50) and median lethal time (LT50) against aphids (via immersion) and LT50 against FAW (via injection) were determined. FAW eggs immersed in aqueous conidia suspension were infected after 60 h. Differentially expressed genes (DEGs) in the infection of FAW larvae by P. lilacinum were analyzed by quantitative reverse transcription PCR. The significantly upregulated DEGs include FAW immune genes (antimicrobial peptides, C-type lectins, lysozymes, prophenoloxidase, and peptidoglycan recognition proteins) and fungal pathogenic genes (ligase, chitinase, and hydrophobin). Our data demonstrate that P. lilacinum can be used as an entomopathogenic fungus against agricultural insect pests.


Asunto(s)
Áfidos , Quitinasas , Hypocreales , Mariposas Nocturnas , Animales , Control Biológico de Vectores , Spodoptera , Virulencia
12.
Dev Comp Immunol ; 127: 104309, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748796

RESUMEN

Insect C-type lectins (CTLs) play crucial roles in modulating the humoral and cellular immune responses. In the domesticated silkworm Bombyx mori L., BmCTL10 gene encodes an immulectin containing two carbohydrate recognition domains (CRDs). The phylogenetic analysis showed that BmCTL10 didn't cluster with other immulectin homologs in B. mori. BmCTL10 was mainly expressed in second to fifth instar larvae, wandering stage larvae, prepupa, and adults. In naïve fifth instar larvae, BmCTL10 was predominantly expressed in the fat body and epidermis. In second instar larvae, the topical application of Beauveria bassiana by immersion caused down-regulation of BmCTL10. The intra-hemocoel injection of E. coli, S. aureus, B. bassiana, and 20-hydroxyecdysone in fifth instar larvae caused tissue and time-specific inductions. The recombinant protein (rBmCTL10) can bind to larval hemocytes and various pathogen-associated molecular patterns to enhance hemocyte-mediated nodulation, phagocytosis, and encapsulation. rBmCTL10 caused significant upregulation of most antimicrobial peptides and nitric oxide synthase 1 in hemocytes in vivo. Yeast two-hybrid demonstrated that integrin ß3 and ß4 subunits can interact with BmCTL10. Furthermore, only CRD2 can interact with the ß3, while both CRD1 and CRD2 can interact with the ß4. Taken together, this study showed that BmCTL10 has multiple functions in the innate immune responses of B. mori and two integrin ß subunits are their potential receptors.


Asunto(s)
Bombyx , Animales , Escherichia coli/metabolismo , Inmunidad Innata/genética , Proteínas de Insectos/metabolismo , Larva , Filogenia , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA