Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Mater ; 23(4): 527-534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454027

RESUMEN

The liquid-like feature of thermoelectric superionic conductors is a double-edged sword: the long-range migration of ions hinders the phonon transport, but their directional segregation greatly impairs the service stability. We report the synergetic enhancement in figure of merit (ZT) and stability in Cu1.99Se-based superionic conductors enabled by ion confinement effects. Guided by density functional theory and nudged elastic band simulations, we elevated the activation energy to restrict ion migrations through a cation-anion co-doping strategy. We reduced the carrier concentration without sacrificing the low thermal conductivity, obtaining a ZT of ∼3.0 at 1,050 K. Notably, the fabricated device module maintained a high conversion efficiency of up to ∼13.4% for a temperature difference of 518 K without obvious degradation after 120 cycles. Our work could be generalized to develop electrically and thermally robust functional materials with ionic migration characteristics.

2.
Exp Cell Res ; 387(1): 111772, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31836471

RESUMEN

Aggregation of α-Synuclein is central to the pathogenesis of Parkinson's disease (PD). However, these α-Synuclein inclusions are not only present in brain, but also in gut. Enteroendocrine cells (EECs), which are directly exposed to the gut lumen, can express α-Synuclein and directly connect to α-Synuclein-containing nerves. Dysbiosis of gut microbiota and microbial metabolite short-chain fatty acids (SCFAs) has been implicated as a driver for PD. Butyrate is an SCFA produced by the gut microbiota. Our aim was to demonstrate how α-Synuclein expression in EECs responds to butyrate stimulation. Interestingly, we found that sodium butyrate (NaB) increases α-Synuclein mRNA expression, enhances Atg5-mediated autophagy (increased LC3B-II and decreased SQSTM1 (also known as p62) expression) in murine neuroendocrine STC-1 cells. Further, α-Synuclein mRNA was decreased by the inhibition of autophagy by using inhibitor bafilomycin A1 or by silencing Atg5 with siRNA. Moreover, the PI3K/Akt/mTOR pathway was significantly inhibited and cell apoptosis was activated by NaB. Conditioned media from NaB-stimulated STC-1 cells induced inflammation in SH-SY5Y cells. Collectively, NaB causes α-Synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/metabolismo , Ácido Butírico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , alfa-Sinucleína/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Ratones , ARN Mensajero/metabolismo
3.
Neurochem Res ; 45(9): 2128-2142, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32556930

RESUMEN

The abnormal production of short chain fatty acid (SCFAs) caused by gut microbial dysbiosis plays an important role in the pathogenesis and progression of Parkinson's disease (PD). This study sought to evaluate how butyrate, one of SCFAs, affect the pathology in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated mouse model of PD. Sodium butyrate (NaB; 165 mg/kg/day i.g., 7 days) was administrated from the day after the last MPTP injection. Interestingly, NaB significantly aggravated MPTP-induced motor dysfunction (P < 0.01), decreased dopamine (P < 0.05) and 5-HT (P < 0.05) levels, exacerbated declines of dopaminergic neurons (34%, P < 0.05) and downregulated expression of tyrosine hydroxylase (TH, 47%, P < 0.05), potentiated glia-mediated neuroinflammation by increasing the number of microglia (17%, P < 0.05) and activating astrocytes (28%, P < 0.01). In vitro study also confirmed that NaB could significantly exacerbate pro-inflammatory cytokines expression (IL-1ß, 4.11-fold, P < 0.01; IL-18, 3.42-fold, P < 0.01 and iNOS, 2.52-fold, P < 0.05) and NO production (1.55-fold, P < 0.001) in LPS-stimulated BV2 cells. In addition, NaB upregulated the expression of pro-inflammatory cytokines (IL-6, 3.52-fold, P < 0.05; IL-18, 1.72-fold, P < 0.001) and NLRP3 (3.11-fold, P < 0.001) in the colon of PD mice. However, NaB had no effect on NFκB, MyD88 and TNF-α expression in PD mice. Our results indicate that NaB exacerbates MPTP-induced PD by aggravating neuroinflammation and colonic inflammation independently of the NFκB/MyD88/TNF-α signaling pathway.


Asunto(s)
Ácido Butírico/toxicidad , Inflamación/fisiopatología , Enfermedad de Parkinson Secundaria/fisiopatología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Astrocitos/efectos de los fármacos , Línea Celular , Colon/efectos de los fármacos , Citocinas/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Hipocinesia/fisiopatología , Inflamación/inducido químicamente , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Enfermedad de Parkinson Secundaria/inducido químicamente , Serotonina/metabolismo , Uniones Estrechas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
4.
Phys Chem Chem Phys ; 19(40): 27664-27669, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28983540

RESUMEN

Owing to the excellent electrical properties and inherently complex crystal structure, Cu2Se has been considered as a promising thermoelectric (TE) material. Herein, a series of Cu2Se1-xTex (x = 0, 0.02, 0.04, 0.06, and 0.08) bulk samples are prepared by combining mechanical alloying (MA) and spark plasma sintering (SPS) to investigate the effect of Te content (x) on the phase structure, microstructure and TE properties of stoichiometric Cu2Se. It is found that a maximum TE figure of merit (ZT) value of 1.25 could be achieved for Cu2Se0.98Te0.02 sample at 773 K, which essentially stemmed from the elevated power factor (PF) and reduced thermal conductivity (κ). The results obtained in our study indicate that the introduction of Te into stoichiometric Cu2Se is an effective and convenient strategy to improve ZT by enhancing PF and decreasing κ.

5.
Phys Chem Chem Phys ; 17(28): 18645-52, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26119507

RESUMEN

Herein, we reported a simple and "green" method for preparing the ternary photocatalyst Ag-graphene quantum dots (GQDs)-ZnO. In this method, an aqueous solution of GQDs not only acted as a substituent for the organic solvent for preparing the ZnO precursor but was also used as a reducing agent for the in situ synthesis of Ag nanoparticles (NPs). X-ray diffraction analysis and scanning electron microscopy were employed to confirm the effects of the GQD solution as a solvent on the ZnO structure. Transmission electron microscopy confirmed the synthesis of Ag NPs in the GQD solution as well as the formation of close interconnections between them. Furthermore, photocatalytic tests involving the degradation of Rhodamine B showed that the synthesized ternary photocatalyst displayed excellent visible-light photocatalytic activity, which was much higher than that of pure ZnO and binary photocatalysts such as Ag-ZnO and GQDs-ZnO. We believe that this method will lead to the "green" synthesis of hybrid metal/carbon/semiconductor photocatalysts with higher photocatalytic activities.

6.
ACS Appl Mater Interfaces ; 15(38): 45128-45136, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37708382

RESUMEN

The demand for miniaturization and integration in next-generation advanced high-/pulsed-power devices has resulted in a strong desire for dielectric capacitors with high energy storage capabilities. However, practical applications of dielectric capacitors have been hindered by the challenge of poor energy-storage density (Urec) and efficiency (η) caused by large remanent polarization (Pr) and low breakdown strength (BDS). Herein, we take a method of heterovalent ion substitution engineering in combination with the multilayer capacitor (MLCC) technology and thus achieve a large maximum polarization (Pmax), zero Pr, and high BDS in the AgNbO3 (AN) system simultaneously and obtain excellent Urec and η. The substitution of Sm3+ for Ag+ in SmxAN+Mn MLCCs at x ≥ 0.01 decreases the M1-M2 phase transition temperature, and the antiferroelectric (AFE) M2 phase appears at room temperature, which is beneficial to achieving a low Pr value. Due to the low Pr value and high BDS ∼ 1300 kV·cm-1, an excellent Urec ∼9.8 J·cm-3 and PD,max ∼ 34.8 MW·cm-3 were achieved in SmxAN+Mn MLCCs at x = 0.03. The work suggests a paradigm that can enhance the energy storage capabilities of AFE MLCCs to meet the demanding requirements of advanced energy storage applications.

7.
Nat Commun ; 14(1): 1166, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859413

RESUMEN

Dielectric capacitors with high energy storage performance are highly desired for next-generation advanced high/pulsed power capacitors that demand miniaturization and integration. However, the poor energy-storage density that results from the low breakdown strength, has been the major challenge for practical applications of dielectric capacitors. Herein, we propose a heterovalent-doping-enabled atom-displacement fluctuation strategy for the design of low-atom-displacements regions in the antiferroelectric matrix to achieve the increase in breakdown strength and enhancement of the energy-storage density for AgNbO3-based multilayer capacitors. An ultrahigh breakdown strength ~1450 kV·cm-1 is realized in the Sm0.05Ag0.85Nb0.7Ta0.3O3 multilayer capacitors, especially with an ultrahigh Urec ~14 J·cm-3, excellent η ~ 85% and PD,max ~ 102.84 MW·cm-3, manifesting a breakthrough in the comprehensive energy storage performance for lead-free antiferroelectric capacitors. This work offers a good paradigm for improving the energy storage properties of antiferroelectric multilayer capacitors to meet the demanding requirements of advanced energy storage applications.

8.
Phys Chem Chem Phys ; 14(13): 4475-81, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22366871

RESUMEN

Nanostructured Bi(2-x)Cu(x)S(3) (x = 0, 0.002, 0.005, 0.007, 0.01, 0.03) thermoelectric polycrystals were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS) methods. The effect of Cu content on the microstructure and thermoelectric property of Bi(2-x)Cu(x)S(3) bulk samples was investigated. It was found that the subtle tailoring of Cu content could reduce both the electrical resistivity and the thermal conductivity at the same time, and consequently enhancing the thermoelectric property. A low electrical resistivity of 1.34 × 10(-4)Ω m(-1) and a low thermal conductivity of 0.52 W m(-1) K(-1) were obtained for the Bi(1.995)Cu(0.005)S(3) sample at 573 K. The low thermal conductivity is supposed to be due to the nanoscopic Cu-rich regions embedded in the host matrix. A peak ZT value of 0.34 at 573 K was achieved for the Bi(1.995)Cu(0.005)S(3) composition, which is the highest value in the Bi(2)S(3) system reported so far.

9.
World Allergy Organ J ; 15(5): 100651, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600837

RESUMEN

Background: House dust mites (HDMs) are the main source of indoor inhalatory allergens that cause IgE-mediated allergic diseases. The discovery and identification of HDM allergens are important for the diagnosis and treatment of allergic diseases. Objective: We sought to identify a Group 39 Dermatophagoides pteronyssinus (Der p) allergen, namely Der p 39, and explore its immunodominant IgE epitopes. Methods: Homology analysis of amino acid (aa) sequences in HDM and human troponin C (TnC)-like protein was performed. Total RNA of Der p was extracted and used to amplify Der p 39 cDNA with specific primers. Recombinant Der p 39 protein was expressed with a pET-His prokaryotic expression system and purified with Ni-NTA resins. IgE binding was evaluated with western blot, dot blot, and enzyme-linked immunosorbent assay (ELISA) experiments. The IgE binding epitopes of Der p 39 were identified by observing HDM-allergic sera interactions with truncated and hybrid proteins formed from Der p 39 and human TnC-like proteins. Results: The Der p 39 open reading frame (ORF) cDNA was found to be 462 base pairs and registered in the NCBI library (GenBank no. MZ336019.1). Der p 39, which encoded 153 aa, was found to have 35.63% and 99.35% homology with human TnC and Dermatophagoides farina (Der f) 39, respectively. IgE-ELISA showed IgE binding with expressed and purified recombinant Der p 39 (18 kDa) in 5/87 (5.75%) HDM-allergic sera samples. Analyses of IgE binding with Der p 39-based truncated and hybrid proteins indicated that IgE binding epitopes are likely located in the C-terminal region and dependent on conformational structure. The data from this study were submitted to the World Health Organization and International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature database. Conclusion: Der p 39 was identified as a minor HDM allergen with a conformational IgE binding epitope. These findings could have important theoretical implications in the development of HDM allergy diagnostics and therapeutics.

10.
ACS Appl Mater Interfaces ; 14(27): 30991-30999, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35759732

RESUMEN

One of the notorious problems in BiFeO3-based piezoelectric ceramics is how to limit the formation of Bi25FeO39 and Bi2Fe4O9 impurities to achieve excellent piezoelectric performance. In this study, a one-step preparation technology, namely, excluding PVA, calcining, and sintering are completed in one step, instead of three steps in the ordinary sintering method, is developed to prepare BiFeO3-xBaTiO3 (BF-xBT) ceramics. The significance of this one-step method is that the thermodynamically unstable region of BiFeO3 is successfully avoided based on the Gibbs free energy of BiFeO3, Bi25FeO39, and Bi2Fe4O9. Benefiting from preventing the formation of Bi25FeO39 and Bi2Fe4O9 impurities, the resultant ceramics show dense structures, macroscopic stripe domains, and a small number of island domains and display saturated P-E curves, sharp I-V characteristics, butterfly-shape S-E loops, and good piezoelectric properties (d33 = 174-199 pC/N; TC = 494-513 °C). By analyzing X-ray diffraction patterns of BF-xBT (0 ≤ x ≤ 1) powders at different calcination temperatures (Tcal), the different reaction mechanisms between 750 °C ≤ Tcal ≤ 900 °C and 950 °C ≤ Tcal ≤ 1000 °C are revealed. When 750 °C ≤ Tcal ≤ 900 °C, Bi3+ diffuses into Fe2O3 particles to form BiFeO3 and Bi25FeO39 and then reacts with BaTiO3; in this temperature range, the formed Bi25FeO39 is hard to eliminate. At 950 °C ≤ Tcal ≤ 1000 °C, Bi3+ and Fe ions simultaneously diffuse into BaTiO3 to form BF-xBT, which is beneficial to preventing the formation of Bi25FeO39 and the improvement of performance.

11.
Food Funct ; 13(6): 3621-3631, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35262138

RESUMEN

Mast cells (MCs) are the main effector cells in the onset of high-affinity receptor for IgE (FcεRI)-mediated allergic diseases. The aim of this study was to test whether dihydrocoumarin (DHC), a food flavoring agent derived from Melilotus officinalis, can block IgE-induced MC activation effects and to examine the potential molecular mechanisms by which DHC affects MC activation. Rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin antigen, and treated with DHC. Western blot analyses were performed to detect the expression of signaling proteins. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine DHC effects on allergic reactions in vivo. DHC inhibited MC degranulation, as evidenced by reduced ß-hexosaminidase activity and histamine levels, and reduced morphological changes associated with MC activation, namely cellular elongation and F-actin reorganization. DHC inhibited the activation of MAPK, NF-κB, and AP-1 pathways in IgE-activated MCs. Additionally, DHC could attenuate IgE/Ag-induced allergic reactions (dye extravasation and ear thickening) in PCA as well as OVA challenge-induced reactions in ASA mice (body temperature, serum histamine and IL-4 secretion changes). In conclusion, DHC suppressed MC activation. DHC may represent a new MC-suppressing treatment strategy for the treatment of IgE-mediated allergic diseases.


Asunto(s)
Anafilaxia , Mastocitos , Anafilaxia/tratamiento farmacológico , Animales , Degranulación de la Célula , Aromatizantes/metabolismo , Inmunoglobulina E/metabolismo , Inflamación/metabolismo , Ratones , Anafilaxis Cutánea Pasiva , Ratas
12.
Nat Commun ; 13(1): 6087, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241619

RESUMEN

GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.

13.
J Am Chem Soc ; 133(50): 20112-5, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22084827

RESUMEN

A significant enhancement of thermoelectric performance in layered oxyselenides BiCuSeO was achieved. The electrical conductivity and Seebeck coefficient of BiCu(1-x)SeO (x = 0-0.1) indicate that the carriers were introduced in the (Cu(2)Se(2))(2-) layer by Cu deficiencies. The maximum of electrical conductivity is 3 × 10(3) S m(-1) for Bicu(0.975)Seo at 650 °C, much larger than 470 S m(-1) for pristine BiCuSeO. Featured with very low thermal conductivity (∼0.5 W m(-1) K(-1)) and a large Seebeck coefficient (+273 µV K(-1)), ZT at 650 °C is significantly increased from 0.50 for pristine BiCuSeO to 0.81 for BiCu(0.975)SeO by introducing Cu deficiencies, which makes it a promising candidate for medium temperature thermoelectric applications.

14.
ACS Appl Mater Interfaces ; 13(3): 4192-4202, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33438390

RESUMEN

BiFeO3-BaTiO3 is a promising high-temperature piezoelectric ceramic that possesses both good electromechanical properties and a Curie temperature (TC). Here, the piezoelectric charge constants (d33) and strain coefficients (d*33) of (1 - x)BiFeO3-xBaTiO3 (BF-xBT; 0.20 ≤ x ≤ 0.50) lead-free piezoelectrics were investigated at room temperature. The results showed a maximum d33 of 225 pC/N in the BF-0.30BT ceramic and a maximum d*33 of 405 pm/V in the BF-0.35BT ceramic, with TCs of 503 and 415 °C, respectively. To better understand the performance enhancement mechanisms, a phase diagram was established using the results of XRD, piezoresponse force microscopy, TEM, and electrical property measurements. The superb d33 of the BF-0.30BT ceramic arose because of its location in the optimum point in the morphotropic phase boundary, low oxygen vacancy (VO··) concentration, and domain heterogeneity. The superior d*33 of the BF-0.35BT ceramic was attributed to a weak relaxor behavior between coexisting macrodomains and polar nanoregions. The presented strategy provides guidelines for designing high-temperature BF-BT ceramics for different applications.

15.
Adv Mater ; 33(43): e2103633, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34494316

RESUMEN

Pores in a solid can effectively reduce thermal conduction, but they are not favored in thermoelectric materials due to simultaneous deterioration of electrical conductivity. Conceivably, creating a porous structure may endow thermoelectric performance enhancement provided that overwhelming reduction of electrical conductivity can be suppressed. This work demonstrates such an example, in which a porous structure is formed leading to a significant enhancement in the thermoelectric figure of merit (zT). By a unique BiI3 sublimation technique, pore networks can be introduced into tetrahedrite Cu12 Sb4 S13 -based materials, accompanied by changes in their hierarchical structures. The addition of a small quantity of BiI3 (0.7 vol%) results in a ≈72% reduction in the lattice thermal conductivity, whereas the electrical conductivity is improved due to unexpected enhanced carrier mobility. As a result, an enhanced zT of 1.15 at 723 K in porous tetrahedrite and a high conversion efficiency of 6% at ΔT = 419 K in a fabricated segmented single-leg based on this porous material are achieved. This work offers an effective way to concurrently modulate the electrical and thermal properties during the synthesis of high-performance porous thermoelectric materials.

16.
Research (Wash D C) ; 2020: 1672051, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32190833

RESUMEN

The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg1-Mg2 distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = µm ∗3/2) and hence thermoelectric power factor of Mg3+δ Sb2-y Bi y family near room temperature. Mg3+δ Sb0.5Bi1.5 has a high carrier mobility of 247 cm2 V-1 s-1 and a record power factor of 3470 µW m-1 K-2 at room temperature. Considering both efficiency and power density, Mg3+δ Sb1.0Bi1.0 with a high average ZT of 1.13 and an average power factor of 3184 µW m-1 K-2 in the temperature range of 50-250°C would be a strong candidate to replace the conventional n-type thermoelectric material Bi2Te2.7Se0.3. The protection of the transport channel through Mg sublattice means alloying on Sb sublattice has little effect on electron while it significantly reduces phonon thermal conductivity, providing us an approach to decouple electron and phonon transport for better thermoelectric materials.

17.
Nanoscale ; 11(21): 10306-10313, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31099817

RESUMEN

Motivated by the recent experimental exfoliation of ß-Cu2S thin films and the theoretical finding of a new phase labeled the δ-Cu2S monolayer, we carried out extensive studies on thermal conductivity and thermoelectric properties of the new phase using first principles combined with Boltzmann transport theory, focusing on the analysis of group velocities, Gruneisen parameters, three-phonon scattering rates, and the scattering phase space. Our results show that the δ-Cu2S monolayer exhibits an intrinsically ultralow lattice thermal conductivity of 0.10 W m-1 K-1 at 800 K. Such an ultralow lattice thermal conductivity leads to a high thermoelectric figure of merit ZT = 1.33 at 800 K in an optimum p-type doping concentration, which is not only larger than the value of 1.23 in In2S3 doped Cu2S at 850 K but also comparable with the value of 1.7 in Cu1.97S at 1000 K, exhibiting good potential in thermoelectric applications.

18.
RSC Adv ; 9(9): 5045-5052, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35514666

RESUMEN

Nobel metal (Au and Ag) nanoparticles are often used in semiconductor photocatalysis to enhance the photocatalytic activity, while inexpensive Cu attracts less attention due to its easy oxidization. Herein, an elaborate study was conducted using Cu-nanoparticle-dispersed amorphous BaTiO3 films as photocatalysts. Photocatalytic and photoelectrochemical measurements demonstrated that the degradation efficiency and photocurrent density of the nanocomposite films are approximately 3.5 and 10 times as high as the pristine BaTiO3 film, respectively, which can be ascribed to a synergetic effect of the surface plasmon resonance and interband excitation. In addition, a good stability was also demonstrated by cyclic tests for the degradation of rhodamine B, which may be due to the amorphous nature of the BaTiO3 matrix providing hole-trapping centers. The high photocatalytic stability suggests that Cu is a promising alternative metal to replace Au and Ag for the development of cost-effective photocatalysts. Our work demonstrates a simple and promising strategy for improving the photostability of Cu nanomaterials and may provide a useful guideline for designing Cu-based composite materials toward various photocatalytic applications such as water pollution treatment.

19.
RSC Adv ; 9(25): 14422-14431, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35519293

RESUMEN

Intrinsic Bi2Te3 is a representative thermoelectric (TE) material with high performance at low temperature, which enables applications for electronic cooling. However, antisite defects easily form in p-type Bi2Te3, resulting in the difficulty of further property enhancement. In this work, the formation energy of native point defects in Bi2Te3 supercells and the electronic structure of Bi2Te3 primitive unit cell were calculated using first-principles. The antisite defect Bi_Te1 has a lower formation energy (0.68 eV) under the Te-lack condition for p-type Bi2Te3. The effects of point defects on TE properties were investigated via a series of p-type Bi2Te3-x (x = 0, 0.02, 0.04, 0.06, 0.08) single crystals prepared by the temperature gradient growth method (TGGM). Apart from the increased power factor (PF∥) which originates from the increased carrier concentration (n ∥) and m*, the thermal conductivity (κ ∥) was also cut down by the increased point defects. Benefitting from the high PF∥ of 4.09 mW m-1 K-2 and the low κ ∥ of 1.77 W m-1 K-1, the highest ZT ∥ of 0.70 was obtained for x = 0.06 composition at 300 K, which is 30% higher than that (0.54) of the intrinsic Bi2Te3.

20.
Neurotherapeutics ; 16(3): 741-760, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30815845

RESUMEN

Parkinson's disease (PD) is strongly associated with life style, especially dietary habits, which have gained attention as disease modifiers. Here, we report a fasting mimicking diet (FMD), fasting 3 days followed by 4 days of refeeding for three 1-week cycles, which accelerated the retention of motor function and attenuated the loss of dopaminergic neurons in the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mice. Levels of brain-derived neurotrophic factor (BDNF), known to promote the survival of dopaminergic neurons, were increased in PD mice after FMD, suggesting an involvement of BDNF in FMD-mediated neuroprotection. Furthermore, FMD decreased the number of glial cells as well as the release of TNF-α and IL-1ß in PD mice, showing that FMD also inhibited neuro-inflammation. 16S and 18S rRNA sequencing of fecal microbiota showed that FMD treatment modulated the shifts in gut microbiota composition, including higher abundance of Firmicutes, Tenericutes, and Opisthokonta and lower abundance of Proteobacteria at the phylum level in PD mice. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry revealed that FMD modulated the MPTP-induced lower propionic acid and isobutyric acid, and higher butyric acid and valeric acid and other metabolites. Transplantation of fecal microbiota, from normal mice with FMD treatment to antibiotic-pretreated PD mice increased dopamine levels in the recipient PD mice, suggesting that gut microbiota contributed to the neuroprotection of FMD for PD. These findings demonstrate that FMD can be a new means of preventing and treating PD through promoting a favorable gut microbiota composition and metabolites.


Asunto(s)
Ayuno , Microbioma Gastrointestinal , Trastornos Parkinsonianos/prevención & control , Animales , Western Blotting , Química Encefálica , Factor Neurotrófico Derivado del Encéfalo/análisis , Cuerpo Estriado/química , Dopamina/análisis , Dopamina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Ayuno/fisiología , Técnica del Anticuerpo Fluorescente , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/dietoterapia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Serotonina/análisis , Serotonina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA