Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(21): 4160-4175.e6, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36272409

RESUMEN

CRISPR-Cas9-mediated genome editing depends on PAM recognition to initiate DNA unwinding. PAM mutations can abolish Cas9 binding and prohibit editing. Here, we identified a Cas9 from the thermophile Alicyclobacillus tengchongensis for which the PAM interaction can be robustly regulated by DNA topology. AtCas9 has a relaxed PAM of N4CNNN and N4RNNA (R = A/G) and is able to bind but not cleave targets with mutated PAMs. When PAM-mutated DNA was in underwound topology, AtCas9 exhibited enhanced binding affinity and high cleavage activity. Mechanistically, AtCas9 has a unique loop motif, which docked into the DNA major groove, and this interaction can be regulated by DNA topology. More importantly, AtCas9 showed near-PAMless editing of supercoiled plasmid in E. coli. In mammalian cells, AtCas9 exhibited broad PAM preference to edit plasmid with up to 72% efficiency and effective base editing at four endogenous loci, representing a potentially powerful tool for near-PAMless editing.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , ADN/genética , Plásmidos , Mamíferos/metabolismo
2.
Mol Cell ; 81(6): 1216-1230.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33606996

RESUMEN

Interferon-γ (IFN-γ)-mediated adaptive resistance is one major barrier to improving immunotherapy in solid tumors. However, the mechanisms are not completely understood. Here, we report that IFN-γ promotes nuclear translocation and phase separation of YAP after anti-PD-1 therapy in tumor cells. Hydrophobic interactions of the YAP coiled-coil domain mediate droplet initiation, and weak interactions of the intrinsically disordered region in the C terminus promote droplet formation. YAP partitions with the transcription factor TEAD4, the histone acetyltransferase EP300, and Mediator1 and forms transcriptional hubs for maximizing target gene transcriptions, independent of the canonical STAT1-IRF1 transcription program. Disruption of YAP phase separation reduced tumor growth, enhanced immune response, and sensitized tumor cells to anti-PD-1 therapy. YAP activity is negatively correlated with patient outcome. Our study indicates that YAP mediates the IFN-γ pro-tumor effect through its nuclear phase separation and suggests that YAP can be used as a predictive biomarker and target of anti-PD-1 combination therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia , Interferón gamma/metabolismo , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Células HEK293 , Humanos , Interferón gamma/genética , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
3.
Proc Natl Acad Sci U S A ; 121(32): e2403652121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39083419

RESUMEN

Leucine-rich glioma-inactivated protein 1 (LGI1), a secretory protein in the brain, plays a critical role in myelination; dysfunction of this protein leads to hypomyelination and white matter abnormalities (WMAs). Here, we hypothesized that LGI1 may regulate myelination through binding to an unidentified receptor on the membrane of oligodendrocytes (OLs). To search for this hypothetic receptor, we analyzed LGI1 binding proteins through LGI1-3 × FLAG affinity chromatography with mouse brain lysates followed by mass spectrometry. An OL-specific membrane protein, the oligodendrocytic myelin paranodal and inner loop protein (OPALIN), was identified. Conditional knockout (cKO) of OPALIN in the OL lineage caused hypomyelination and WMAs, phenocopying LGI1 deficiency in mice. Biochemical analysis revealed the downregulation of Sox10 and Olig2, transcription factors critical for OL differentiation, further confirming the impaired OL maturation in Opalin cKO mice. Moreover, virus-mediated re-expression of OPALIN successfully restored myelination in Opalin cKO mice. In contrast, re-expression of LGI1-unbound OPALIN_K23A/D26A failed to reverse the hypomyelination phenotype. In conclusion, our study demonstrated that OPALIN on the OL membrane serves as an LGI1 receptor, highlighting the importance of the LGI1/OPALIN complex in orchestrating OL differentiation and myelination.


Asunto(s)
Diferenciación Celular , Péptidos y Proteínas de Señalización Intracelular , Ratones Noqueados , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Oligodendroglía/citología , Ratones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Vaina de Mielina/metabolismo , Proteínas de la Mielina/metabolismo , Proteínas de la Mielina/genética
4.
Proc Natl Acad Sci U S A ; 119(31): e2205469119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35895684

RESUMEN

T regulatory (Treg) cells are essential for self-tolerance whereas they are detrimental for dampening the host anti-tumor immunity. How Treg cells adapt to environmental signals to orchestrate their homeostasis and functions remains poorly understood. Here, we identified that transcription factor EB (TFEB) is induced by host nutrition deprivation or interleukin (IL)-2 in CD4+ T cells. The loss of TFEB in Treg cells leads to reduced Treg accumulation and impaired Treg function in mouse models of cancer and autoimmune disease. TFEB intrinsically regulates genes involved in Treg cell differentiation and mitochondria function while it suppresses expression of proinflammatory cytokines independently of its established roles in autophagy. This coordinated action is required for mitochondria integrity and appropriate lipid metabolism in Treg cells. These findings identify TFEB as a critical regulator for orchestrating Treg generation and function, which may contribute to the adaptive responses of T cells to local environmental cues.


Asunto(s)
Adaptación Fisiológica , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Mitocondrias , Neoplasias , Linfocitos T Reguladores , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Enfermedades Autoinmunes/inmunología , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Modelos Animales de Enfermedad , Interleucina-2/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Anal Chem ; 96(23): 9317-9324, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38818541

RESUMEN

Inaccurate or cumbersome clinical pathogen diagnosis between Gram-positive bacteria (G+) and Gram-negative (G-) bacteria lead to delayed clinical therapeutic interventions. Microelectrode-based electrochemical sensors exhibit the significant advantages of rapid response and minimal sample consumption, but the loading capacity and discrimination precision are weak. Herein, we develop reversible fusion-fission MXene-based fiber microelectrodes for G+/G- bacteria analysis. During the fissuring process, the spatial utilization, loading capacity, sensitivity, and selectivity of microelectrodes were maximized, and polymyxin B and vancomycin were assembled for G+/G- identification. The surface-tension-driven reversible fusion facilitated its reusability. A deep learning model was further applied for the electrochemical impedance spectroscopy (EIS) identification in diverse ratio concentrations of G+ and G- of (1:100-100:1) with higher accuracy (>93%) and gave predictable detection results for unknown samples. Meanwhile, the as-proposed sensing platform reached higher sensitivity toward E. coli (24.3 CFU/mL) and S. aureus (37.2 CFU/mL) in 20 min. The as-proposed platform provides valuable insights for bacterium discrimination and quantification.


Asunto(s)
Microelectrodos , Bacterias Grampositivas/aislamiento & purificación , Bacterias Gramnegativas/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Staphylococcus aureus/aislamiento & purificación , Técnicas Electroquímicas/instrumentación , Vancomicina/farmacología , Antibacterianos/farmacología , Antibacterianos/análisis , Polimixina B/química , Polimixina B/farmacología , Espectroscopía Dieléctrica
6.
Eur J Immunol ; 53(3): e2250122, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597350

RESUMEN

Autoimmune demyelinating diseases can be induced by an immune response against myelin peptides; however, the exact mechanism underlying the development of such diseases remains unclear. In experimental autoimmune encephalomyelitis, we found that the clearance of exogenous myelin antigen at the peak of the primary immune response is key to the pathogenesis of the disease. The generation of effector T cells requires continuous antigen stimulation, whereas redundant antigen traps and exhausts effector T cells in the periphery, which induces resistance to the disease. Moreover, insufficient antigenic stimulation fails to induce disease efficiently owing to insufficient numbers of effector T cells. When myelin antigen is entirely cleared, the number of effector T cells reaches a peak, which facilitates infiltration of more effector T cells into the central nervous system. The peripheral antigen clearance initiates the first wave of effector T cell entry into the central nervous system and induces chronic inflammation. The inflamed central nervous system recruits the second wave of effector T cells that worsen inflammation, resulting in loss of self-tolerance. These findings provide new insights into the mechanism underlying the development of autoimmune demyelinating diseases, which may potentially impact future treatments.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Linfocitos T , Sistema Nervioso Central/patología , Inflamación , Inmunidad
7.
Small ; 20(13): e2308962, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37949812

RESUMEN

Photodynamic therapy (PDT), as a means of locally and rapidly inducing adipocyte death via light illumination, in combination with adipose browning induction, a more gradual and widespread effect that could transform white adipose tissue into thermogenic adipose tissue, manifests a promising approach to combat obesity. Herein, adipose-targeting ultra-small hybrid nanoparticles (Pep-PPIX-Baic NPs) composed of an adipose-targeting peptide, Fe3+, a photosensitizer (protoporphyrin IX), and a browning agent (baicalin) are introduced. Pep-PPIX-Baic NPs have been designed to simultaneously enhance the photodynamic effect and induce browning. After intravenous injection in obese mice, the hybrid nanoparticles can specifically accumulate in white adipose tissues, especially those rich in blood supply, and drive adipose reduction owing to the synergy of the PDT effect and baicalin browning induction. Overall, Pep-PPIX-Baic NPs exhibited superior anti-obesity potential through PDT synergistic with adipose browning induction. The designed multifunctional adipose-targeting hybrid nanoparticles present a prospective nanoplatform for obesity treatment.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Ratones , Animales , Estudios Prospectivos , Obesidad/tratamiento farmacológico , Tejido Adiposo Blanco
8.
Chemistry ; 30(5): e202302718, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37846841

RESUMEN

Diazomethyl-substituted iodine(III) compounds with electron-withdrawing groups (EWG) connected to diazo methyl center were a type of donor-acceptor diazo compounds with potential reaction abilities similar to ordinary diazo compounds. Although several diazomethyl-substituted iodine(III) compounds were synthesized and used in the nucleophilic substitution reactions as early as 1994, the synthesis and application of new iodine(III) diazo compounds have only been reported to a certain extent in recent years. In the presence of rhodium catalyst, photocatalyst, or nucleophiles, diazomethyl-substituted iodine(III) compounds can be converted into rhodium-carbenes, diazomethyl radicals, ester radicals or nucleophilic intermediates, which can be used as key intermediates for the formation of chemical bonds. The aim of this review is to give an overview of diazomethyl-substituted iodine(III) compounds in organic synthesis.

9.
Rev Endocr Metab Disord ; 25(4): 805-816, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763958

RESUMEN

A minority of children born small for gestational age (SGA) may experience catch-up growth failure and remain short in adulthood. However, the underlying causes and mechanisms of this phenomenon are not yet fully comprehended. We reviewed the present state of research concerning the growth hormone-insulin-like growth factor axis and growth plate in SGA children who fail to achieve catch-up growth. Additionally, we explored the factors influencing catch-up growth in SGA children and potential molecular mechanisms involved. Furthermore, we considered the potential benefits of supplementary nutrition, specific dietary patterns, probiotics and drug therapy in facilitating catch-up growth.


Asunto(s)
Recién Nacido Pequeño para la Edad Gestacional , Humanos , Recién Nacido Pequeño para la Edad Gestacional/crecimiento & desarrollo , Recién Nacido , Niño , Trastornos del Crecimiento , Hormona de Crecimiento Humana , Desarrollo Infantil/fisiología
10.
Ann Hematol ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761184

RESUMEN

Bruton's tyrosine kinase inhibitors (BTKi) exhibit superior efficacy in relapsed/refractory primary central nervous system lymphoma (PCNSL), but few studies have evaluated patients with newly diagnosed PCNSL, and even fewer studies have evaluated differences in efficacy between treatment with BTKi and traditional chemotherapy. This study retrospectively analyzed the clinical characteristics of 86 patients with PCNSL and identified predictors of poor prognosis for overall survival (OS). After excluding patients who only received palliative care, 82 patients were evaluated for efficacy and survival. According to the induction regimen, patients were divided into the traditional chemotherapy, BTKi combination therapy, and radiotherapy groups; the objective response rates (ORR) of the three groups were 71.4%, 96.2%, and 71.4% (P = 0.037), respectively. Both median progression-free survival and median duration of remission showed statistically significant differences (P = 0.019 and P = 0.030, respectively). The median OS of the BTKi-containing therapy group was also longer than that of the traditional chemotherapy group (not reached versus 47.8 (32.5-63.1) months, P = 0.038).Seventy-one patients who achieved an ORR were further analyzed, and achieved an ORR after four cycles of treatment and maintenance therapy had prolonged OS (P = 0.003 and P = 0.043, respectively). In conclusion, survival, and prognosis of patients with newly diagnosed PCNSL are influenced by the treatment regimen, with the BTKi-containing regimen showing great potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA