Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(10): 18366-18378, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858994

RESUMEN

Mode-pairing quantum key distribution (MP-QKD) holds great promise for the practical implementation of QKD in the near future. It combines the security advantages of measurement device independence while still being capable of breaking the Pirandola-Laurenza-Ottaviani-Banchi bound without the need for highly demanding phase-locking and phase-tracking technologies for deployment. In this work, we explore optimization strategies for MP-QKD in a wavelength-division multiplexing scenario. The simulation results reveal that incorporation of multiple wavelengths not only leads to a direct increase in key rate but also enhances the pairing efficiency by employing our novel pairing strategies among different wavelengths. As a result, our work provides a new avenue for the future application and development of MP-QKD.

2.
BMC Biol ; 21(1): 231, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37867192

RESUMEN

BACKGROUND: RNA splicing plays significant roles in fundamental biological activities. However, our knowledge about the roles of alternative splicing and underlying mechanisms during spermatogenesis is limited. RESULTS: Here, we report that Serine/arginine-rich splicing factor 2 (SRSF2), also known as SC35, plays critical roles in alternative splicing and male reproduction. Male germ cell-specific deletion of Srsf2 by Stra8-Cre caused complete infertility and defective spermatogenesis. Further analyses revealed that deletion of Srsf2 disrupted differentiation and meiosis initiation of spermatogonia. Mechanistically, by combining RNA-seq data with LACE-seq data, we showed that SRSF2 regulatory networks play critical roles in several major events including reproductive development, spermatogenesis, meiotic cell cycle, synapse organization, DNA recombination, chromosome segregation, and male sex differentiation. Furthermore, SRSF2 affected expression and alternative splicing of Stra8, Stag3 and Atr encoding critical factors for spermatogenesis in a direct manner. CONCLUSIONS: Taken together, our results demonstrate that SRSF2 has important functions in spermatogenesis and male fertility by regulating alternative splicing.


Asunto(s)
Empalme del ARN , Espermatogénesis , Masculino , Humanos , Espermatogénesis/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo , Meiosis/genética , ARN Mensajero
3.
Opt Lett ; 48(11): 2797-2800, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262213

RESUMEN

Measurement-device-independent quantum key distribution can remove all possible detector side channels, and is robust against state preparation flaws when further combined with the loss-tolerant method. However, the secure key rate in this scenario is relatively low, thus hindering its practical application. Here, we first present a four-intensity decoy-state protocol where the signal intensity is modulated only in Z basis for key generation while the decoy intensities are modulated in both Z and X bases for parameter estimation. Moreover, we adopt collective constraint and joint-study strategy in statistical fluctuation analysis. We have also experimentally demonstrated this protocol and the result indicates high performance and good security for practical applications.

4.
J Cell Physiol ; 237(11): 4317-4325, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36161883

RESUMEN

Mammalian oocytes are arrested at the diplotene stage of prophase I during fetal or postnatal development. It was reported that cyclin-dependent kinases (CDK1) was the sole CDK to drive the resumption of meiosis and CDK2 was dispensable for meiosis progression in mouse oocytes according to the conditional knockout studies. However, a recent study showed that CDK2 activity is essential for meiotic division and gametogenesis by means of gene-directed mutagenesis, which avoids the compensatory activation of other CDKs. Taken the compensatory effect between CDKs after gene knockout, the physiological function of CDK2 activity in oocyte maturation remains unclear. To address this issue, we applied a specific small-molecule inhibitor to restrain CDK2 activity transiently during oocyte meiotic maturation. Surprisingly, transient inhibition of CDK2 activity severely prevented the meiosis I completion although the meiotic resumption was not affected. Then we found that CDK2 activity was required for establishment of normal spindle and chromosome dynamics. Notably, CDK2 inhibition interrupted the anaphase-promoting complex/cyclosome (APC/C)-dependent degradation pathway by maintaining the activation of spindle assembly checkpoint (SAC). Interestingly, CDK2 inhibition prevented the egg activation as well. Overall, our data demonstrate that CDK2 kinase activity is required for proper dynamics of spindle and chromosomes, whose disturbance induces the continuous SAC activation and subsequent inactivation of APC/C activity in oocyte meiosis.


Asunto(s)
Meiosis , Oocitos , Ratones , Animales , Oocitos/metabolismo , Oogénesis , Ciclosoma-Complejo Promotor de la Anafase/genética , Quinasas Ciclina-Dependientes/genética , Mamíferos/metabolismo
5.
Development ; 146(23)2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704793

RESUMEN

Chromosome segregation is driven by separase, activity of which is inhibited by binding to securin and cyclin B1/CDK1. In meiosis, premature separase activity will induce aneuploidy or abolish chromosome segregation owing to the untimely destruction of cohesin. Recently, we have proved that cyclin B2 can compensate for cyclin B1 in CDK1 activation for the oocyte meiosis G2/M transition. In the present study, we identify an interaction between cyclin B2/CDK1 and separase in mouse oocytes. We find that cyclin B2 degradation is required for separase activation during the metaphase I-anaphase I transition because the presence of stable cyclin B2 leads to failure of homologous chromosome separation and to metaphase I arrest, especially in the simultaneous absence of securin and cyclin B1. Moreover, non-phosphorylatable separase rescues the separation of homologous chromosomes in stable cyclin B2-arrested cyclin B1-null oocytes. Our results indicate that cyclin B2/CDK1 is also responsible for separase inhibition via inhibitory phosphorylation to regulate chromosome separation in oocyte meiosis, which may not occur in other cell types.


Asunto(s)
Anafase , Proteína Quinasa CDC2/metabolismo , Segregación Cromosómica , Ciclina B2/metabolismo , Metafase , Oocitos/metabolismo , Separasa/metabolismo , Animales , Proteína Quinasa CDC2/genética , Ciclina B2/genética , Femenino , Ratones , Ratones Noqueados , Oocitos/citología , Separasa/genética
6.
Opt Express ; 30(5): 8126-8135, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299560

RESUMEN

Quantum random access code (QRAC) serves the communication task to encode a long message into a quantum system and allow the receiver to decode the initial information with a higher success probability than classical random access code (RAC). Here, we present an experimental demonstration of sequential 3 → 1 QRAC in the prepare-transform-measure scenario with one sender and three independent receivers. The experimental results show that, in the 3 → 1 QRAC scenario, three receivers can independently decode the initial information with an average success probability higher than the classical RAC.

7.
Opt Lett ; 47(3): 665-668, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103698

RESUMEN

Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detection side channels but still makes additional assumptions on sources that can be compromised through uncharacterized side channels in practice. Here, we combine a recently proposed reference technique to prove the security of MDI-QKD against possible source imperfections and/or side channels. This requires some reference states and an upper bound on the parameter that describes the quality of the sources. With this formalism we investigate the asymptotic performance of single-photon sources, and the results show that the side channels have a great impact on the key rates.

8.
Opt Lett ; 47(23): 6285-6288, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219228

RESUMEN

Tomography is a very beneficial and fundamental technique in the fields of quantum information and quantum optics, which can be applied to infer information about quantum states or quantum processes. In quantum key distribution (QKD), tomography can be proposed to improve the secure key rate by taking full advantage of data from both matched and mismatched measurement outcomes to characterize quantum channels accurately. However, to date, no experimental work has been conducted on it. In this work, we study tomography-based QKD (TB-QKD), and for the first time, to the best of our knowledge, carry out proof-of-principle experimental demonstrations by implementing Sagnac interferometers to simulate different transmission channels. Furthermore, we compare it with reference-frame-independent QKD (RFI-QKD) and demonstrate that TB-QKD can significantly outperform RFI-QKD in certain channels, e.g., amplitude damping channel or probabilistic rotation channel.

9.
Mol Biol Rep ; 49(5): 4095-4099, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35536498

RESUMEN

BACKGROUND: Picea brachytyla is a unique tree species in China. Due to being extensively exploited in the past, it is listed as Vulnerable in the IUCN Red List. It is mainly distributed across the Hengduan and Daba-Qinglin mountains and has been found in other areas including Sichuan Province and Qinghai Province, China. Microsatellites, or simple sequence repeats (SSRs), are widely used in correlational studies of genetic protection. Few markers have been developed for P. brachytyla because of the small number of trees and scholarly resources available for study. METHODS AND RESULTS: The genomic DNA of P. brachytyla was sequenced using the DNBSEQ platform, and unigenes were obtained after assembly and deredundancy. Of the 100 primer pairs screened, we isolated 10 useful microsatellite loci from P. brachytyla genes. The observed and expected heterozygosity values ranged from 0.173 (P24) to 0.788 (P79; mean 0.469) and 0.199 (P87) to 0.911 (P79; mean 0.700), respectively. Polymorphism-information content (PIC) ranged from 0.190 (P84) to 0.904 (P79; mean 0.666). Only P84 and P72 were in a Hardy-Weinberg equilibrium (P > 0.05) in the different P. brachytyla populations. All the levels of linkage disequilibrium (LD) were high for the 10 SSR loci indicating that there were no autocorrelations among the 10 SSR loci. CONCLUSIONS: The novel polymorphic microsatellite markers showed high polymorphism for P. brachytyla. These polymorphic microsatellites can provide a basis for future conservation and genetic research on this rare plant species.


Asunto(s)
Picea , China , Desequilibrio de Ligamiento/genética , Repeticiones de Microsatélite/genética , Picea/genética , Polimorfismo Genético/genética
10.
J Environ Manage ; 317: 115381, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751237

RESUMEN

Application of zero-valent iron (ZVI) has become one of the most promising innovative technologies for the remediation of environmental pollutants. However, ZVI may suffer from the low intrinsic reactivity toward refractory pollutants, which seriously restricts its practical application in fields. Therefore, strategies have been developing to enhance the reactivity of ZVI. Until now, the most commonly used strategies include pretreatment of ZVI, synthesis of highly-active ZVI-based materials and additional auxiliary measures. In this review, a systematic and comprehensive summary of these commonly used strategies has been conducted for the following purposes: (1) to understand the fundamental mechanisms of the selected approaches; (2) to point out their advantages and shortcomings; (3) to illustrate the main problems of their large-scale application; (4) to forecast the future trend of developing ZVI technologies. Overall, this review is devoted to providing a fundamental understanding on the mechanism for enhancing the reactivity of ZVI and facilitating the practical application of ZVI technologies in fields.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Hierro
11.
Opt Lett ; 46(15): 3757-3760, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329274

RESUMEN

Digital signature is a key technique in information security, especially for identity authentications. Compared to classical correspondence, quantum digital signatures (QDSs) provide a considerably higher level of security. At present, its performance is limited by key generation protocols, which are fundamentally limited in terms of channel capacity. Based on the idea of twin-field quantum key distribution, this Letter presents a twin-field QDS protocol and details a corresponding security analysis. In its distribution stage, a specific key generation protocol, the sending-or-not-sending twin-field protocol, has been adopted. Besides, we present a systematic model to evaluate the performance of a QDS protocol and compare the performance of our protocol to other typical QDS protocols. Numerical simulation results show that the new protocol exhibits outstanding security and practicality compared to other existing protocols. Therefore, our protocol paves the way toward real-world applications of QDSs.

12.
Opt Lett ; 46(15): 3729-3732, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329267

RESUMEN

The measurement-device-independent quantum key distribution (MDI-QKD) can be immune to all detector side-channel attacks. Moreover, it can be easily implemented combining with the matured decoy-state methods under current technology. It, thus, seems a very promising candidate in practical implementation of quantum communications. However, it suffers from a severe finite-data-size effect in most existing MDI-QKD protocols, resulting in relatively low key rates. Recently, Jiang et al. [Phys. Rev. A103, 012402 (2021).PLRAAN1050-294710.1103/PhysRevA.103.012402] proposed a double-scanning method to drastically increase the key rate of MDI-QKD. Based on Jiang et al.'s theoretical work, here we for the first time, to the best of our knowledge, implement the double-scanning method into MDI-QKD and carry out corresponding experimental demonstration. With a moderate number of pulses of 1010, we can achieve 150 km secure transmission distance, which is impossible with all former methods. Therefore, our present work paves the way toward practical implementation of MDI-QKD.

13.
J Cell Physiol ; 235(7-8): 5541-5554, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31984513

RESUMEN

Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Meiosis/genética , Proteínas Nucleares/genética , Oocitos/crecimiento & desarrollo , Anafase/genética , Animales , Centrosoma , Femenino , Puntos de Control de la Fase M del Ciclo Celular/genética , Metafase/genética , Ratones , Oocitos/metabolismo , Huso Acromático/genética
14.
Opt Lett ; 45(15): 4176-4179, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735252

RESUMEN

Measurement-device-independent quantum key distribution (MDI-QKD) removes all detector side-channel attacks and guarantees a promising way for remote secret keys sharing. Several proof-of-principal experiments have been demonstrated to show its security and practicality. However, these practical implementations demand mostly, for example, perfect state preparation or completely characterized sources to ensure security, which are difficult to realize with prior art. Here, we investigate a three-state MDI-QKD using uncharacterized sources, with the simple requirement that the encoding state is bidimensional, which eliminates security threats from both the source flaws and detection loopholes. As a demonstration, a proof-of-principal experiment over 170 km transmission distance based on Faraday-Michelson interferometers is achieved, representing, to the best of our knowledge, the longest transmission distance recorded under the same security level.

15.
Opt Lett ; 45(7): 1711-1714, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32235980

RESUMEN

A quantum digital signature (QDS) guarantees the unforgeability, nonrepudiation, and transferability of signature messages with information-theoretic security, and hence has attracted much attention recently. However, most previous implementations of QDS showed relatively low signature rates and/or short transmission distance. In this Letter, we report a proof-of-principle phase-encoding QDS demonstration using only one decoy state. First, such a method avoids the modulation of the vacuum state, thus reducing experimental complexity and random number consumption. Moreover, incorporated with low-loss asymmetric Mach-Zehnder interferometers and a real-time polarization calibration technique, we have successfully achieved a higher signature rate, e.g., 0.98 bit/s at 103 km, and to date, a record-breaking, to the best of our knowledge, transmission distance of over 280-km installed fibers. Our work represents a significant step towards real-world applications of QDS.

16.
Zygote ; 28(2): 97-102, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31787133

RESUMEN

Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.


Asunto(s)
Exocitosis , Sinaptotagmina I , Animales , Calcio/metabolismo , Femenino , Ratones , Oocitos/metabolismo , Oogénesis , Sinaptotagmina I/genética
17.
Opt Lett ; 44(6): 1468-1471, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874678

RESUMEN

The twin-field quantum key distribution (TF-QKD) protocol is designed to beat the rate-distance limit of quantum key distributions without employing quantum repeaters; meanwhile, it can offer the measurement-device-independent secure level. In this Letter, we propose to improve the performance of TF-QKD protocols by employing modified coherent states. Based on the Wang et al. sending-or-not scheme [Phys. Rev. A98, 062323 (2018)PLRAAN1050-294710.1103/PhysRevA.98.062323], we study the key rate with the modified coherent states in finite data size and do comparisons with the one using weak coherent states. Through numerical simulations, we demonstrate that modified coherent states can substantially increase the performance of QKD more than the latter.

18.
Molecules ; 24(7)2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970544

RESUMEN

The primary aim of this study was to investigate volatile constituents for the differentiation of Chinese marinated pork hocks from four local brands, Dahongmen (DHM), Daoxiangcun (DXC), Henghuitong (HHT) and Tianfuhao (TFH). To this end the volatile constituents were evaluated by gas chromatography-mass spectrometry/olfactometry (GC-MS/O), electronic nose (E-nose) and chemometrics. A total of 62 volatile compounds were identified and quantified in all pork hocks, and 24 of them were considered as odour-active compounds because their odour activity values (OAVs) were greater than 1. Hexanal (OAV at 3.6⁻20.3), octanal (OAV at 30.3⁻47.5), nonanal (OAV at 68.6⁻166.3), 1,8-cineole (OAV at 36.4⁻133.3), anethole (OAV at 5.9⁻28.3) and 2-pentylfuran (OAV at 3.5⁻29.7) were the key odour-active compounds contributing to the integral flavour of the marinated pork hocks. According to principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) of GC-MS/O and E-nose data, the results showed that the marinated pork hocks were clearly separated into three groups: DHM, HHT, and DXC-TFH. Nine odour-active compounds, heptanal, nonanal, 3-carene, d-limonene, ß-phellandrene, p-cymene, eugenol, 2-ethylfuran and 2-pentylfuran, were determined to represent potential flavour markers for the discrimination of marinated pork hocks. This study indicated the feasibility of using GC-MS/O coupled with the E-nose method for the differentiation of the volatile profile in different brands of marinated pork hocks.


Asunto(s)
Nariz Electrónica , Aromatizantes/análisis , Análisis de los Alimentos/métodos , Conservación de Alimentos , Olfatometría/métodos , Carne Roja/análisis , Compuestos Orgánicos Volátiles/análisis , Animales , Porcinos
19.
Opt Express ; 26(4): 4219-4229, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475274

RESUMEN

At present, most of the measurement-device-independent quantum key distributions (MDI-QKD) are based on weak coherent sources and limited in the transmission distance under realistic experimental conditions, e.g., considering the finite-size-key effects. Hence in this paper, we propose a new biased decoy-state scheme using heralded single-photon sources for the three-intensity MDI-QKD, where we prepare the decoy pulses only in X basis and adopt both the collective constraints and joint parameter estimation techniques. Compared with former schemes with WCS or HSPS, after implementing full parameter optimizations, our scheme gives distinct reduced quantum bit error rate in the X basis and thus show excellent performance, especially when the data size is relatively small.

20.
Opt Express ; 26(10): 13289-13300, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801354

RESUMEN

Recently Zhang et al [ Phys. Rev. A95, 012333 (2017)] developed a new approach to estimate the failure probability for the decoy-state BB84 QKD system when taking finite-size key effect into account, which offers security comparable to Chernoff bound, while results in an improved key rate and transmission distance. Based on Zhang et al's work, now we extend this approach to the case of the measurement-device-independent quantum key distribution (MDI-QKD), and for the first time implement it onto the four-intensity decoy-state MDI-QKD system. Moreover, through utilizing joint constraints and collective error-estimation techniques, we can obviously increase the performance of practical MDI-QKD systems compared with either three- or four-intensity decoy-state MDI-QKD using Chernoff bound analysis, and achieve much higher level security compared with those applying Gaussian approximation analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA