Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Internet Res ; 26: e50012, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373031

RESUMEN

BACKGROUND: With the advent of a new era for health and medical treatment, characterized by the integration of mobile technology, a significant digital divide has surfaced, particularly in the engagement of older individuals with mobile health (mHealth). The health of a family is intricately connected to the well-being of its members, and the use of media plays a crucial role in facilitating mHealth care. Therefore, it is important to examine the mediating role of media use behavior in the connection between the family health of older individuals and their inclination to use mHealth devices. OBJECTIVE: This study aims to investigate the impact of family health and media use behavior on the intention of older individuals to use mHealth devices in China. The study aims to delve into the intricate dynamics to determine whether media use behavior serves as a mediator in the relationship between family health and the intention to use mHealth devices among older adults. The ultimate goal is to offer well-founded and practical recommendations to assist older individuals in overcoming the digital divide. METHODS: The study used data from 3712 individuals aged 60 and above, sourced from the 2022 Psychology and Behavior Investigation of Chinese Residents study. Linear regression models were used to assess the relationships between family health, media use behavior, and the intention to use mHealth devices. To investigate the mediating role of media use behavior, we used the Sobel-Goodman Mediation Test. This analysis focused on the connection between 4 dimensions of family health and the intention to use mHealth devices. RESULTS: A positive correlation was observed among family health, media use behavior, and the intention to use mHealth devices (r=0.077-0.178, P<.001). Notably, media use behavior was identified as a partial mediator in the relationship between the overall score of family health and the intention to use mHealth devices, as indicated by the Sobel test (z=5.451, P<.001). Subgroup analysis further indicated that a complete mediating effect was observed specifically between family health resources and the intention to use mHealth devices in older individuals with varying education levels. CONCLUSIONS: The study revealed the significance of family health and media use behavior in motivating older adults to adopt mHealth devices. Media use behavior was identified as a mediator in the connection between family health and the intention to use mHealth devices, with more intricate dynamics observed among older adults with lower education levels. Going forward, the critical role of home health resources must be maximized, such as initiatives to develop digital education tailored for older adults and the creation of media products specifically designed for them. These measures aim to alleviate technological challenges associated with using media devices among older adults, ultimately bolstering their inclination to adopt mHealth devices.


Asunto(s)
Pueblo Asiatico , Salud de la Familia , Intención , Telemedicina , Anciano , Humanos , Estudios Transversales , Telemedicina/instrumentación , Telemedicina/métodos
2.
Environ Geochem Health ; 46(4): 136, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483758

RESUMEN

Many organic contaminated sites require on-site remediation; excavation remediation processes can release many volatile organic compounds (VOCs) which are key atmospheric pollutants. It is therefore important to rapidly identify VOCs during excavation and map their risk areas for human health protection. In this study, we developed a rapid analysis and assessment method, aiming to and reveal the real-time distribution of VOCs, evaluate their human health risks by quantitative models, and design appropriate control measures. Through on-site diagonal distribution sampling and analysis, VOCs concentration showed a decreasing trend within 5 m from the excavation point and then increased after 5 m with the increase in distance from the excavation point (p < 0.05). The concentrations of VOCs near the dominant wind direction were higher than the concentrations of surrounding pollutants. In contrast with conventional solid-phase adsorption (SPA) and thermal desorption gas chromatography-mass spectrometry (TD-GC/MS) methods for determining the composition and concentration of VOCs, the rapid measurement of VOCs by photo-ionization detector (PID) fitted well with the chemical analysis and modeling assessment of cancer/non-cancer risk. The targeting area was assessed as mild-risk (PID < 10 ppm), moderate-risk (PID from 10 to 40 ppm), and heavy-risk (PID > 40 ppm) areas. Similarly, the human health risks also decreased gradually with the distance from the excavation point, with the main risk area located in the dominant wind direction. The results of rapid PID assessment were comparable to conventional risk evaluation, demonstrating its feasibility in rapidly identifying VOCs releases and assessing the human health risks. This study also suggested appropriate control measures that are important guidance for personal protection during the remediation excavation process.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas , Contaminantes Ambientales/análisis
3.
Anal Chem ; 95(9): 4291-4300, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36780247

RESUMEN

Exposure to environmental pollutants occurs ubiquitously and poses many risks to human health and the ecosystem. Although many analytical methods have been developed to assess such jeopardies, the circumstances applying these means are restricted to linking the toxicities to compositions in the pollutant mixtures. The present study proposes a novel analytical approach, namely, biospectroscopy-bioreporter-coupling (BBC), to quantify and apportion the toxicities of metal ions and organic pollutants. Using a toxicity bioreporter ADPWH_recA and Raman spectroscopy, both bioluminescent signals and spectral alterations had similar dosage- and time-response behavior to the toxic compounds, validating the possibility of coupling these two methods from practical aspects. Raman spectral alterations successfully distinguished the biomarkers for different toxicity mechanisms of individual pollutants, such as ring breathing mode of DNA/RNA bases (1373 cm-1) by Cr, reactive oxygen species-induced peaks of proteins (1243 cm-1), collagen (813 cm-1), and lipids (1255 cm-1) by most metal ions, and indicative fingerprints of organic toxins. The support vector machine model had a satisfactory performance in distinguishing and apportioning toxicities of individual toxins from all input data, achieving a sensitivity of 88.54% and a specificity of 97.80%. This work set a preliminary database for Raman spectral alterations of whole-cell bioreporter response to multiple pollutants. It proved the state-of-the-art concept that the BBC approach is feasible to rapidly quantify and precisely apportion toxicities of numerous pollutant mixtures.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/toxicidad
4.
BMC Gastroenterol ; 23(1): 431, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066411

RESUMEN

BACKGROUND: Antibiotic use in the early stages of acute pancreatitis is controversial. The purpose of this study was to investigate the effect of early antibiotic application on the prognosis of acute pancreatitis (AP). MATERIALS AND METHODS: Clinical data of patients with primary AP admitted to our emergency ward within 72 hours of onset were retrospectively collected from January 2016 to December 2020. We classified patients with acute pancreatitis according to etiology and disease severity, and compared the differences in hospital stay, laparotomy rate, and in-hospital mortality among AP patients who received different antibiotic treatment strategies within 72 hours of onset. RESULTS: A total of 1134 cases were included, with 681 (60.1%) receiving early antibiotic treatment and 453 (39.9%) not receiving it. There were no significant differences in baseline values and outcomes between the two groups. In subgroup analysis, patients with biliary severe acute pancreatitis (SAP) who received early antibiotics had lower rates of laparotomy and invasive mechanical ventilation, as well as shorter hospital stays compared to those who did not receive antibiotics. In logistic regression analysis, the early administration of carbapenem antibiotics in biliary SAP patients was associated with a lower in-hospital mortality rate. Early antibiotic use in biliary moderate-severe acute pancreatitis (MSAP) reduced hospital stays and in-hospital mortality. Quinolone combined with metronidazole treatment in biliary mild acute pancreatitis (MAP) shortened hospital stays. Early antibiotic use does not benefit patients with non-biliary AP. CONCLUSION: Strategies for antibiotic use in the early stages of AP need to be stratified according to cause and disease severity.


Asunto(s)
Pancreatitis , Humanos , Pancreatitis/tratamiento farmacológico , Enfermedad Aguda , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Pronóstico , Antibacterianos/uso terapéutico
5.
Environ Sci Technol ; 57(44): 17087-17098, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37823365

RESUMEN

The identification and in situ cultivation of functional yet uncultivable microorganisms are important to confirm inferences regarding their ecological functions. Here, we developed a new method that couples Raman-activated cell sorting (RACS), stable-isotope probing (SIP), and genome-directed cultivation (GDC)─namely, RACS-SIP-GDC─to identify, sort, and cultivate the active toluene degraders from a complex microbial community in petroleum-contaminated soil. Using SIP, we successfully identified the active toluene degrader Pigmentiphaga, the single cells of which were subsequently sorted and isolated by RACS. We further successfully assembled the genome of Pigmentiphaga based on the metagenomic sequencing of 13C-DNA and genomic sequencing of sorted cells, which was confirmed by gyrB gene comparison and average nucleotide identity determination. Additionally, the genotypes and phenotypes of this degrader were directly linked at the single-cell level, and its complete toluene metabolic pathways in petroleum-contaminated soil were reconstructed. Based on its unique metabolic properties uncovered by genome sequencing, we modified the traditional cultivation medium with antibiotics, amino acids, carbon sources, and growth factors (e.g., vitamins and metals), achieving the successful cultivation of RACS-sorted active degrader Pigmentiphaga sp. Our results implied that RACS-SIP-GDC is a state-of-the-art approach for the precise identification, targeted isolation, and cultivation of functional microbes from complex communities in natural habitats. RACS-SIP-GDC can be used to explore specific and targeted organic-pollution-degrading microorganisms at the single-cell level and provide new insights into their biodegradation mechanisms.


Asunto(s)
Petróleo , Suelo , Isótopos/química , Tolueno/metabolismo , ADN , Biodegradación Ambiental , Microbiología del Suelo
6.
Environ Sci Technol ; 57(40): 15123-15133, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37747805

RESUMEN

Chromium (Cr) is a heavy metal with a high toxicity and pathogenicity. Microbial reduction is an effective strategy to remove Cr(VI) at contaminated sites but suffers from the low populations and activities of Cr-reducing microorganisms in soils. This study proposed an in situ sonoporation-mediated gene transfer approach, which improved soil Cr(VI) reduction performance by delivering exogenous Cr-transporter chrA genes and Cr-reducing yieF genes into soil microorganisms with the aid of ultrasound. Besides the increasing populations of Cr-resistant bacteria and elevated copy numbers of chrA and yieF genes after sonoporation-mediated gene transfer, three new Cr-reducing strains were isolated, among which Comamonas aquatica was confirmed to obtain Cr-resistant capability. In addition, sonoporation-mediated gene transfer was the main driving force significantly shaping soil microbial communities owing to the predominance of Cr-resistant microbes. This study pioneered and evidenced that in situ soil sonoporation-mediated gene transfer could effectively deliver functional genes into soil indigenous microbes to facilitate microbial functions for enhanced bioremediation, e.g., Cr-reduction in this study, showing its feasibility as a chemically green and sustainable remediation strategy for heavy metal contaminated sites.

7.
Ecotoxicol Environ Saf ; 252: 114569, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696727

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) have been deemed to be newly emerged contaminants interfering with various physiological processes closely related with gene expression alteration. Reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) serves as a powerful tool to assess gene expression, however highly dependent on a reliable reference gene. Therefore, it is necessary to identify stable reference genes for gene expression study under MP or NP stress. We constructed a mouse model postexposure to polypropylene microplastics (PP-MPs) to assess PP-MPs bioaccumulation in kidney, evaluate the kidney pathological changes, and then explore potential reference genes via RT-qPCR. Although the hematoxylin-eosin staining showed no obvious damage in kidney tissues, we observed significant PP-MPs accumulation in kidney using Raman spectra analysis supported by spectral multivariate analysis. The expression of 19 candidate reference genes were examined, including the commonly used ones of ß-actin, glyceraldehyde 3-phosphate dehydrogenase (Gapdh), Cytochrome c oxidase subunit 4I1 (Cox4i), Histocompatibility 13 (H13) and ribosomal protein. Their expression stability and reliability were assessed by the combination of four algorithms including geNorm, NormFinder, BestKeeper and Delta Cq. The geNorm analysis revealed that the top three genes with the lowest variability were Cox4il, Rps9 and Gapdh, whereas NormFinder results ranked Rps3, Cox4il and Rps18 as the top three ones. Rpl15, Cox4i1 and Rps3 were the most reliable reference genes in BestKeeper results, and Delta Cq proposed Rps3 and Cox4il as the stable genes. The overall ranking indicated by GMR value gave the five most stable reference genes (Cox4i1, Rps3, Rps9, Rps18 and Gapdh). Three genes associated with different biochemical processes (Atp5f1, Crebbp and Dele1) were chosen to verify the characterized reference genes using the least stable gene as a control, exhibiting different expression profiles and implying the essentiality to select the reliable reference genes. Our results documented the expression fluctuations of acknowledged reference gene (Ubc) and proposed a set of reliable reference genes for future studies of gene expression profiles in MP treated mouse models.


Asunto(s)
Perfilación de la Expresión Génica , Microplásticos , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Microplásticos/toxicidad , Plásticos , Reproducibilidad de los Resultados , Transcriptoma , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia
8.
Ecotoxicol Environ Saf ; 261: 115107, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290298

RESUMEN

Under the influence of different types of disinfectants and disinfection environments, the removal level of pathogens and the formation potential of disinfection by-products (DBPs) will have a dual impact on the groundwater environment. The key points for sustainable groundwater safety management are how to balance the positive and negative relationship and formulate a scientific disinfection model in combination with risk assessment. In this study, the effects of sodium hypochlorite (NaClO) and peracetic acid (PAA) concentrations on pathogenic E. coli and DBPs were investigated using static-batch and dynamic-column experiments, as well as the optimal disinfection model for groundwater risk assessment was explored using quantitative microbial risk assessment and disability-adjusted life years (DALYs) models. Compared to static disinfection, deposition and adsorption were the dominant factors causing E. coli migration at lower NaClO levels of 0-0.25 mg/L under dynamic state, while disinfection was its migration factor at higher NaClO levels of 0.5-6.5 mg/L. In contrast, E. coli removed by PAA was the result of the combined action of deposition, adsorption, and disinfection. The disinfection effects of NaClO and PAA on E. coli differed under dynamic and static conditions. At the same NaClO level, the health risk associated with E. coli in groundwater was higher, whereas, under the same PAA conditions, the health risk was lower. Under dynamic conditions, the optimal disinfectant dosage required for NaClO and PAA to reach the same acceptable risk level was 2 and 0.85 times (irrigation) or 0.92 times (drinking) of static disinfection, respectively. The results may help prevent the misuse of disinfectants and provide theoretical support for managing twin health risks posed by pathogens and DBPs in water treatment.


Asunto(s)
Desinfectantes , Agua Subterránea , Purificación del Agua , Desinfección/métodos , Escherichia coli , Desinfectantes/farmacología , Ácido Peracético , Purificación del Agua/métodos , Medición de Riesgo
9.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850611

RESUMEN

Guided wave Electro Magnetic Acoustic Transducers (EMATs) offer an elegant method for structural inspection and localisation relative to geometric features, such as welds. This paper presents a Lorentz force EMAT construction framework, where a numerical model has been developed for optimising Printed Circuit Board (PCB) coil parameters as well as a methodology for optimising magnet array parameters to a user's needs. This framework was validated experimentally to show its effectiveness through comparison to an industry built EMAT. The framework was then used to design and manufacture a Side-Shifted Unidirectional Periodic Permanent Magnet (PPM) EMAT for use on a mobile robotic system, which uses guided waves for ranging to build internal maps of a given subject, identifying welded sections, defects and other structural elements. The unidirectional transducer setup was shown to operate in simulation and was then manufactured to compare to the bidirectional transmitter and two-receiver configurations on a localisation system. The unidirectional setup was shown to have clear benefits over the bidirectional setup for mapping an unknown environment using guided waves as there were no dead spots of mapping where signal direction could not be interpreted. Additionally, overall package size was significantly reduced, which in turn allows more measurements to be taken within confined spaces and increases robotic crawler mobility.

10.
Environ Sci Technol ; 56(4): 2289-2299, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35061946

RESUMEN

Magnetic-nanoparticle-mediated isolation coupled with stable-isotope probing (MMI-SIP) is a cultivation-independent higher-resolution approach for isolating active degraders in their natural habitats. However, it addresses the community level and cannot directly link the microbial identities, phenotypes, and in situ functions of the active degraders at the single-cell level within complex microbial communities. Here, we used 13C-labeled phenanthrene as the target and developed a new method coupling MMI-SIP and Raman-activated cell sorting (RACS), namely, MMI-SIP-RACS, to identify the active phenanthrene-degrading bacterial cells from polycyclic aromatic hydrocarbon (PAH)-contaminated wastewater. MMI-SIP-RACS significantly enriched the active phenanthrene degraders and successfully isolated the representative single cells. Amplicon sequencing analysis by SIP, 13C shift of the single cell in Raman spectra, and the 16S rRNA gene from single cell sequencing via RACS confirmed that Novosphingobium was the active phenanthrene degrader. Additionally, MMI-SIP-RACS reconstructed the phenanthrene metabolic pathway and genes of Novosphingobium, including two novel genes encoding phenanthrene dioxygenase and naphthalene dioxygenase. Our findings suggested that MMI-SIP-RACS is a powerful method to efficiently and precisely isolate active PAH degraders from complex microbial communities and directly link their identities to functions at the single-cell level.


Asunto(s)
Nanopartículas , Hidrocarburos Policíclicos Aromáticos , Sphingomonadaceae , Biodegradación Ambiental , Isótopos , Fenómenos Magnéticos , Fenantrenos , Hidrocarburos Policíclicos Aromáticos/metabolismo , ARN Ribosómico 16S/genética , Microbiología del Suelo , Sphingomonadaceae/metabolismo
11.
Ecotoxicol Environ Saf ; 240: 113704, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653968

RESUMEN

Eucalyptus is widely planted in China for wood industries, and there are increasing concerns about its ecotoxicity in the environment. This study explored the in-vitro toxicity of Eucalyptus extracts by assessing the impacts of water-soluble and dimethylsulfoxide (DMSO)-soluble fractions via a whole-cell bioreporter, Acinetobacter baylyi ADPWH_recA. Compounds identified in Eucalyptus extracts included one tannin, two phenolic acids, four terpenoids, four glycosides, and five flavonoids. The leaf extracts contained more biological-active components than barks and roots. Genotoxicity induced by Eucalyptus extracts was mainly associated with water extracts (e.g., flavonoids, phenolic acids) instead of DMSO extracts. The significant cytotoxicity was explained by programmed cell death (PCD), suggested by the results of propidium iodide (PI) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays. Generally, water-soluble fractions contributed more toxicities than DMSO-soluble fractions, particularly at high concentrations. A robust linear regression was built between the compromised toxicity and PCD index (Compromised toxicity = -2.192 × PCD index + 2.219; R2 = 0.8886), suggesting a PCD-dependent compromised toxicity which was greatly underestimated. Our results implied non-neglectable ecotoxicological risks of Eucalyptus extracts, hinting at the possible magnified ecological impacts of its large-scale plantation and the potential adverse outcomes to the surrounding ecosystems.


Asunto(s)
Eucalyptus , Dimetilsulfóxido , Ecosistema , Flavonoides/farmacología , Extractos Vegetales/farmacología , Agua
12.
J Environ Manage ; 317: 115379, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751236

RESUMEN

The construction of cascade reservoirs increases eutrophication and exacerbates algal blooms and thus threatens water quality. Previous studies on the microalgae in reservoir have mainly focused on the spatio-temporal patterns of surface microalgae communities at the horizontal scale, while few studies have simultaneously considered the successions of microalgae in vertical profiles including the sediments and the effects of the nutrients release and microalgae in sediments on microalgae in upper waters. In this study, we investigated the effects of microalgae and physico-chemical parameters in waters and sediments on the successions of vertical microalgae communities in Xipi Reservoir, Southeast China. The seasonal variations in microalgae compositions decreased gradually from the surface water (the dominance of Cryptophyta and Chlorophyta in spring, Chlorophyta and Cyanophyta in summer, and relatively uniform in autumn and winter) to the sediment (the dominance of Bacillariophyta throughout the year), which was influenced by the variations of physico-chemical factors in different layers. The spatio-temporal variations in microalgae communities in waters was attributing to not only the heterogeneities of the stratification, and the physico-chemical factors such as water temperature, pH, and nutrient concentrations, especially for phosphorus in the water column, but also the combinations of phosphorus release and microalgae composition in sediments. Environmental changes would be especially problematic for microalgae groups such as Cryptophyta, Dinophyta and Chlorophyta that were sensitive to the changes of temperature and nutrients. Our results are helpful for an extensive understanding of the dynamics of microalgae communities in reservoir, and contribute to reservoir management for ensuring the safety of drinking water.


Asunto(s)
Chlorophyta , Microalgas , China , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton , Estaciones del Año
13.
Environ Microbiol ; 23(11): 7042-7055, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34587314

RESUMEN

Rhizoremediation is a potential technique for polycyclic aromatic hydrocarbon (PAH) remediation; however, the catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation remain unclear. To address these issues, stable-isotope-probing coupled with metagenomics and molecular ecological network analyses were first used to investigate the phenanthrene rhizoremediation by three different prairie grasses in this study. All rhizospheres exhibited a significant increase in phenanthrene removal and markedly modified the diversity of phenanthrene degraders by increasing their populations and interactions with other microbes. Of all the active phenanthrene degraders, Marinobacter and Enterobacteriaceae dominated in the bare and switchgrass rhizosphere respectively; Achromobacter was markedly enriched in ryegrass and tall fescue rhizospheres. Metagenomes of 13 C-DNA illustrated several complete pathways of phenanthrene degradation for each rhizosphere, which clearly explained their unique rhizoremediation mechanisms. Additionally, propanoate and inositol phosphate of carbohydrates were identified as the dominant factors that drove PAH rhizoremediation by strengthening the ecological networks of soil microbial communities. This was verified by the results of rhizospheric and non-rhizospheric treatments supplemented with these two substances, further confirming their key roles in PAH removal and in situ PAH rhizoremediation. Our study offers novel insights into the mechanisms of in situ rhizoremediation at PAH-contaminated sites.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Raíces de Plantas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Rizosfera , Suelo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
14.
Anal Chem ; 93(12): 5098-5106, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33728890

RESUMEN

Human health is at great risk due to the spreading of antimicrobial resistance (AMR). The lengthy procedure of conventional antimicrobial susceptibility testing (AST) usually requires a few days. We developed a fast Raman-assisted antibiotic susceptibility test (FRAST), which detects single bacterial metabolic activity in the presence of antibiotics, using Raman single-cell spectroscopy. It was found that single-cell Raman spectra (SCRS) would show a clear and distinguishable Raman band at the "silent zone" (2000-2300 cm-1), due to the active incorporation of deuterium from heavy water (D2O) by antibiotic-resistant bacteria. This pilot study has compared the FRAST and the conventional AST for six clinical standard quality controls (four Gram-negative and two Gram-positive bacteria strains) in response to 38 antibiotics. In total, 3200 treatments have been carried out and approximately 64 000 SCRS have been acquired for FRAST analysis. The result showed an overall agreement of 88.0% between the FRAST and the conventional AST assay. The gram-staining classification based on the linear discriminant analysis (LDA) model of SCRS was developed, seamlessly coupling with the FRAST to further reduce the turnaround time. We applied the FRAST to real clinical analysis for nine urinary infectious samples and three sepsis samples. The results were consistent with MALDI-TOF identification and the conventional AST. Under the optimal conditions, the "sample to report" of the FRAST could be reduced to 3 h for urine samples and 21 h for sepsis samples. The FRAST provides fast and reliable susceptibility tests, which could speed up microbiological analysis for clinical practice and facilitate antibiotic stewardship.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Humanos , Pruebas de Sensibilidad Microbiana , Proyectos Piloto
15.
Environ Sci Technol ; 55(2): 962-973, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33371686

RESUMEN

Plants usually promote pollutant bioremediation by several mechanisms including modifying the diversity of functional microbial species. However, conflicting results are reported that root exudates have no effects or negative effects on organic pollutant degradation. In this study, we investigated the roles of ryegrass in phenanthrene degradation in soils using DNA stable isotope probing (SIP) and metagenomics to reveal a potential explanation for conflicting results among phytoremediation studies. Phenanthrene biodegradation efficiency was improved by 8% after 14 days of cultivation. Twelve and ten operational taxonomic units (OTUs) were identified as active phenanthrene degraders in non-rhizosphere and rhizosphere soils, respectively. The active phenanthrene degraders exhibited higher average phylogenetic distances in rhizosphere soils (0.33) than non-rhizosphere soils (0.26). The Ka/Ks values (the ratio of nonsynonymous to synonymous substitutions) were about 10.37% higher in the rhizosphere treatment among >90% of all key carbohydrate metabolism-related genes, implying that ryegrass may be an important driver of microbial community variation in the rhizosphere by relieving the carbohydrate metabolism pressure and improving the survival ability of r-strategy microbes. Most Ka/Ks values of root-exudate-related metabolism genes exhibited little change, except for fumarate hydratase that increased 13-fold in the rhizosphere compared to that in the non-rhizosphere treatment. The Ka/Ks values of less than 50% phenanthrene-degradation-related genes were affected, 30% of which increased and 70% behaved oppositely. Genes with altered Ka/Ks values had a low percentage and followed an inconsistent changing tendency, indicating that phenanthrene and its metabolites are not major factors influencing the active degraders. These results suggested the importance of carbohydrate metabolism, especially fumaric acid, in rhizosphere community shift, and hinted at a new hypothesis that the rhizosphere effect on phenanthrene degradation efficiency depends on the existence of active degraders that have competitive advantages in carbohydrate and fumaric acid metabolism.


Asunto(s)
Lolium , Microbiota , Fenantrenos , Contaminantes del Suelo , Biodegradación Ambiental , Metabolismo de los Hidratos de Carbono , Fenantrenos/análisis , Filogenia , Raíces de Plantas/química , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo/análisis
16.
Ecotoxicol Environ Saf ; 227: 112880, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34655883

RESUMEN

Phosphorus (P) containing minerals are identified as effective Pb stabilizers in soil, while their low solubility limit the Pb immobilization efficiency. In this work, the combination of phosphate solubilizing fungi (PSF) Penicillium oxalicum and tricalcium phosphate (TCP) was constructed and applied to improve Pb immobilization stabilities in medium and soils. P. oxalicum+ TCP could significantly improve Pb2+ removal to above 99% under different TCP/Pb2+ and pH values. TCP and P. oxalicum could remarkably immobilize Pb by ion exchange, and PbC2O4 precipitation or surface adsorption, respectively. While the enhanced Pb immobilization in P. oxalicum+ TCP was explained by stronger Pb2+ interaction with tryptophan protein-like substances in extracellular polymeric substance, and the formation of the most stable Pb-phosphate compound hydroxypyromorphite (Pb5(PO4)3OH). Toxicity characteristic leaching procedure test showed that only 0.91% of Pb2+ was leachable in P. oxalicum+ TCP treatment, significantly lower than that in P. oxalicum (2.90%) and TCP (7.52%) treatments. In addition, the lowest soil exchangeable Pb fraction (37.1%) and the highest available soil P (88.0 mg/kg) were both found in P. oxalicum+ TCP treatment. By synergistically forming stable Pb-containing products, thus the combination of PSF and P minerals could significantly improve Pb2+ immobilization and stability in soils.


Asunto(s)
Penicillium , Contaminantes del Suelo , Fosfatos de Calcio , Matriz Extracelular de Sustancias Poliméricas/química , Plomo , Fosfatos/análisis , Suelo , Contaminantes del Suelo/análisis
17.
Ecotoxicol Environ Saf ; 221: 112432, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34166937

RESUMEN

The intensive and long-term use of atrazine in agriculture has resulted in serious environmental pollution and consequently endangered ecosystem and human health. Soil microorganisms play an important role in atrazine degradation. However, their degradation efficiencies are relatively low due to their slow growth and low abundance, and manure amendment as a practice to improve soil nutrients and microbial activities can solve these problems. This study investigated the roles of goat manure in atrazine degradation performance, metabolites and bacterial community structure. Our results showed that atrazine degradation efficiencies in un-amended soils were 26.9-35.7% and increased to 60.9-84.3% in goat manure amended treatments. Hydroxyatrazine pathway was not significantly altered, whereas deethylatrazine and deisopropylatrazine pathways were remarkably enhanced in treatments amended with manure by encouraging the N-dealkylation of atrazine side chains. In addition, goat manure significantly increased soil pH and contents of organic matters and humus, explaining the change of atrazine metabolic pathway. Nocardioides, Sphingomonas and Massilia were positively correlated with atrazine degradation efficiency and three metabolites, suggesting their preference in atrazine contaminated soils and potential roles in atrazine degradation. Our findings suggested that goat manure acts as both bacterial inoculum and nutrients to improve soil microenvironment, and its amendment is a potential practice in accelerating atrazine degradation at contaminated sites, offering an efficient, cheap, and eco-friendly strategy for herbicide polluted soil remediation.


Asunto(s)
Atrazina/metabolismo , Biodegradación Ambiental , Estiércol/microbiología , Microbiología del Suelo , Animales , Atrazina/análisis , Bacterias/metabolismo , Ecosistema , Cabras , Herbicidas/análisis , Herbicidas/metabolismo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
18.
Environ Sci Technol ; 54(24): 15800-15810, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33274919

RESUMEN

Contamination with petroleum hydrocarbons causes extensive damage to ecological systems. On oil-contaminated sites, alkanes are major components; many indigenous bacteria can access and/or degrade alkanes. However, their ability to do so is affected by external properties of the soil, including nutrient cations. This study used Raman microspectroscopy to study how nutrient cations affect alkanes' bioavailability to Acinetobacter baylyi ADP1 (a known degrader). Treated with Na, K, Mg, and Ca at 10 mM, A. baylyi was exposed to seven n-alkanes (decane, dodecane, tetradecane, hexadecane, nonadecane, eicosane, and tetracosane) and one alkane mixture (mineral oil). Raman spectral analysis indicated that bioavailability of alkanes varied with carbon chain lengths, and additional cations altered the bacterial response to n-alkanes. Sodium significantly increased the bacterial affinity toward decane and dodecane, and K and Mg enhanced the bioavailability of tetradecane and hexadecane. In contrast, the bacterial response was inhibited by Ca for all alkanes. Similar results were observed in mineral oil exposure. Our study employed Raman spectral assay to offer a deep insight into how nutrient cations affect the bioavailability of alkanes, suggesting that nutrient cations can play a key role in influencing the harmful effects of hydrocarbons and could be optimized to enhance the bioremediation strategy.


Asunto(s)
Acinetobacter , Petróleo , Alcanos , Biodegradación Ambiental , Disponibilidad Biológica , Cationes , Nutrientes
19.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31053587

RESUMEN

To identify and obtain the indigenous degraders metabolizing phenanthrene (PHE) and biphenyl (BP) from the complex microbial community within industrial wastewater, DNA-based stable-isotope probing (DNA-SIP) and cultivation-based methods were applied in the present study. DNA-SIP results showed that two bacterial taxa (Vogesella and Alicyclobacillus) were considered the key biodegraders responsible for PHE biodegradation only, whereas Bacillus and Cupriavidus were involved in BP degradation. Vogesella and Alicyclobacillus have not been linked with PHE degradation previously. Additionally, DNA-SIP helped reveal the taxonomic identity of Ralstonia-like degraders involved in both PHE and BP degradation. To target the separation of functional Ralstonia-like degraders from the wastewater, we modified the traditional cultivation medium and culture conditions. Finally, an indigenous PHE- and BP-degrading strain, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by enrichment of the 16S rRNA gene and distinctive dioxygenase genes in the DNA-SIP experiment. Our study has successfully established a program for the application of DNA-SIP in the isolation of the active functional degraders from an environment. It also deepens our insight into the diversity of indigenous PHE- and BP-degrading communities.IMPORTANCE The comprehensive treatment of wastewater in industrial parks suffers from the presence of multiple persistent organic pollutants (POPs), such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), which reduce the activity of activated sludge and are difficult to eliminate. Characterizing and applying active bacterial degraders metabolizing multiple POPs therefore helps to reveal the mechanisms of synergistic metabolism and to improve wastewater treatment efficiency in industrial parks. To date, SIP studies have successfully investigated the biodegradation of PAHs or PCBs in real-world habitats. DNA-SIP facilitates the isolation of target microorganisms that pose environmental concerns. Here, an indigenous phenanthrene (PHE)- and biphenyl (BP)-degrading strain in wastewater, Ralstonia pickettii M1, was isolated via a cultivation-dependent method, and its role in PHE and BP degradation was confirmed by DNA-SIP. Our study provides a routine protocol for the application of DNA-SIP in the isolation of the active functional degraders from an environment.


Asunto(s)
Compuestos de Bifenilo/metabolismo , Fenantrenos/metabolismo , Ralstonia/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Residuos Industriales/análisis , Especificidad de la Especie
20.
Environ Sci Technol ; 53(18): 10926-10940, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31449747

RESUMEN

Heavy metal contamination presents serious threats to living organisms. Functional genes related to cadmium (Cd) hypertolerance or hyperaccumulation must be explored to enhance phytoremediation. Sedum alfredii Hance is a Zn/Cd cohyperaccumulator exhibiting abundant genes associated with Cd hypertolerance. Here, we developed a method for screening genes related to Cd tolerance by expressing a cDNA-library for S. alfredii Hance. Yeast functional complementation validated 42 of 48 full-length genes involved in Cd tolerance, and the majority of them were strongly induced in roots and exhibited diverse expression profiles across tissues. Coexpression network analysis suggested that 15 hub genes were connected with genes involved in metabolic processes, response to stimuli, and metal transporter and antioxidant activity. The functions of a novel SaCTP2 gene were validated by heterologous expression in Arabidopsis, responsible for retarding chlorophyll content decrease, maintaining membrane integrity, promoting reactive oxygen species (ROS) scavenger activities, and reducing ROS levels. Our findings suggest a highly complex network of genes related to Cd hypertolerance in S. alfredii Hance, accomplished via the antioxidant system, defense genes induction, and the calcium signaling pathway. The proposed cDNA-library method is an effective approach for mining candidate genes associated with Cd hypertolerance to develop genetically engineered plants for use in phytoremediation.


Asunto(s)
Sedum , Cadmio , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Minería , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA