Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 145: 109324, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134977

RESUMEN

Ameson portunus (Microsporidia) has caused serious economic losses to the aquaculture industry of swimming crab, Portunus trituberculatus. The hemolymph and hepatopancreas are the main immune organs of P. trituberculatus, and the main sites of A. portunus infection. Elucidating the response characteristics of hemolymph and hepatopancreas to microsporidian infection facilitates the development of microsporidiosis prevention and control strategy. This study performed comparative transcriptomic analysis of hemolymph (PTX/PTXA) and hepatopancreas (PTG/PTGA) of P. trituberculatus uninfected and infected with A. portunus. The results showed that there were 223 and 1309 differentially expressed genes (DEGs) in PTX/PTXA and PTG/PTGA, respectively. The lysosome pathway was significantly enriched after the invasion of the hemolymph by A. portunus. Also, immune-related genes were all significantly up-regulated in the hemolymph and hepatopancreas, suggesting that the invasion by A. portunus may activate host immune responses. Unlike hemolymph, antioxidant and detoxification-related genes were also significantly up-regulated in the hepatopancreas. Moreover, metabolism-related genes were significantly down-regulated in the hepatopancreas, suggesting that energy synthesis, resistance to pathogens, and regulation of oxidative stress were suppressed in the hepatopancreas. Hemolymph and hepatopancreas have similarity and tissue specificity to microsporidian infection. The differential genes and pathways identified in this study can provide references for the prevention and control of microsporidiosis.


Asunto(s)
Braquiuros , Microsporidios , Microsporidiosis , Animales , Braquiuros/genética , Hemolinfa , Hepatopáncreas/metabolismo , Microsporidios/genética , Microsporidiosis/metabolismo , Transcriptoma
2.
BMC Vet Res ; 20(1): 82, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448902

RESUMEN

BACKGROUND: Senecavirus A (SVA) causes an emerging vesicular disease (VD) with clinical symptoms indistinguishable from other vesicular diseases, including vesicular stomatitis (VS), foot-and-mouth disease (FMD), and swine vesicular disease (SVD). Currently, SVA outbreaks have been reported in Canada, the U.S.A, Brazil, Thailand, Vietnam, Colombia, and China. Based on the experience of prevention and control of FMDV, vaccines are the best means to prevent SVA transmission. RESULTS: After preparing an SVA inactivated vaccine (CH-GX-01-2019), we evaluated the immunogenicity of the SVA inactivated vaccine mixed with Imject® Alum (SVA + AL) or Montanide ISA 201 (SVA + 201) adjuvant in mice, as well as the immunogenicity of the SVA inactivated vaccine combined with Montanide ISA 201 adjuvant in post-weaned pigs. The results of the mouse experiment showed that the immune effects in the SVA + 201 group were superior to that in the SVA + AL group. Results from pigs immunized with SVA inactivated vaccine combined with Montanide ISA 201 showed that the immune effects were largely consistent between the SVA-H group (200 µg) and SVA-L group (50 µg); the viral load in tissues and blood was significantly reduced and no clinical symptoms occurred in the vaccinated pigs. CONCLUSIONS: Montanide ISA 201 is a better adjuvant choice than the Imject® Alum adjuvant in the SVA inactivated vaccine preparation, and the CH-GX-01-2019 SVA inactivated vaccine can provide effective protection for pigs.


Asunto(s)
Adyuvantes Inmunológicos , Compuestos de Alumbre , Manitol/análogos & derivados , Aceite Mineral , Ácidos Oléicos , Picornaviridae , Animales , Ratones , Porcinos , Vacunas de Productos Inactivados
3.
Drug Resist Updat ; 66: 100891, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427451

RESUMEN

AIMS: To investigate the in vivo evolution of the mucoid-phenotype of ST11-KL64 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolated from the same patients and gain insights into diverse evolution and biology of these strains. METHODS: Whole genome sequencing and bioinformatic analysis were used to determine the mutation involved in the mucoid phenotype of ST11-KL64 CRKP. Gene knockout, bacterial morphology and capsular polysaccharides (CPS) extraction were used to verify the role of wzc and wcaJ in the mucoid phenotypes. Antimicrobial susceptibility, growth assay, biofilm formation, host cell adhesion and virulence assay were used to investigate the pleiotropic role of CPS changes in ST11-KL64 CRKP strains. RESULTS: Mutation of wzc S682N led to hypermucoid phenotype, which had negative impact on bacterial fitness and resulted in reduced biofilm formation and epithelial cell adhesion; while enhanced resistance to macrophage phagocytosis and virulence. Mutations of wcaJ gene led to non-mucoid phenotype with increased biofilm formation and epithelial cell adhesion, but reduced resistance of macrophage phagocytosis and virulence. Using virulence gene knockout, we demonstrated that CPS, rather than the pLVPK-like virulence plasmid, has a greater effect on mucoid phenotypic changes. CPS could be used as a surrogate marker of virulence in ST11-KL64 CRKP strains. CONCLUSIONS: ST11-KL64 CRKP strains sacrifice certain advantages to develop pathogenicity by changing CPS with two opposite in vivo evolution strategies.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus , Mutación , Virulencia/genética
4.
J Invertebr Pathol ; 203: 108066, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246321

RESUMEN

Ameson portunus, the recently discovered causative agent of "toothpaste disease" of pond-cultured swimming crabs in China has caused enormous economic losses in aquaculture. Understanding the process of spore germination is helpful to elucidate the molecular mechanism of its invasion of host cells. Here, we obtained mature and germinating spores by isolation and purification and in vitro stimulation, respectively. Then, non-germinated and germinated spores were subjected to the comparative transcriptomic analysis to disclose differential molecular responses of these two stages. The highest germination rate, i.e., 71.45 %, was achieved in 0.01 mol/L KOH germination solution. There were 9,609 significantly differentially expressed genes (DEGs), with 685 up-regulated and 8,924 down-regulated DEGs. The up-regulated genes were significantly enriched in ribosome pathway, and the down-regulated genes were significantly enriched in various metabolic pathways, including carbohydrate metabolism, amino acid metabolism and other metabolism. The results suggested that spores require various carbohydrates and amino acids as energy to support their life activities during germination and synthesize large amounts of ribosomal proteins to provide sites for DNA replication, transcription, translation and protein synthesis of the spores of A. portunus within the host cells. Functional genes related to spore germination, such as protein phosphatase CheZ and aquaporin, were also analyzed. The analysis of transcriptome data and identification of functional genes will help to understand the process of spore germination and invasion.


Asunto(s)
Microsporidios , Transcriptoma , Animales , Esporas , Microsporidios/genética , Perfilación de la Expresión Génica , Esporas Bacterianas/genética
5.
J Invertebr Pathol ; 204: 108091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462166

RESUMEN

Ameson portunus is an intracellular pathogen that infects marine crabs Portunus trituberculatus and Scylla paramamosain, causing significant economic losses. However, research into this important parasite has been limited due to the absence of an in vitro culture system. To address this challenge, we developed an in vitro cultivation model of A. portunus using RK13 cell line in this study. The fluorescent labeling assay indicated a high infection rate (∼60 %) on the first day post-infection and quantitative PCR (qPCR) detection demonstrated successful infection as early as six hours post-inoculation. Fluorescence in situ hybridization (FISH) and qPCR were used for the detection of A. portunus infected cells. The FISH probe we designed allowed detection of A. portunus in infected cells and qPCR assay provided accurate quantification of A. portunus in the samples. Transmission electron microscopy (TEM) images revealed that A. portunus could complete its entire life cycle and produce mature spores in RK13 cells. Additionally, we have identified novel life cycle characteristics during the development of A. portunus in RK 13 cells using TEM. These findings contribute to our understanding of new life cycle pathways of A. portunus. The establishment of an in vitro culture model for A. portunus is critical as it provides a valuable tool for understanding the molecular and immunological events that occur during infection. Furthermore, it will facilitate the development of effective treatment strategies for this intracellular pathogen.


Asunto(s)
Braquiuros , Microsporidios , Animales , Microsporidios/fisiología , Microsporidios/genética , Braquiuros/parasitología , Braquiuros/microbiología , Línea Celular , Hibridación Fluorescente in Situ
6.
Syst Parasitol ; 101(2): 13, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193985

RESUMEN

We describe a new kudoid species, Kudoa tanakai n. sp., in the scalpel sawfish, Prionurus scalprum (Actinopterygii: Acanthuriformes: Acanthuridae), from the natural water around western Japan. The plasmodia were filamentous, localized in pseudocysts in the myofibers of the trunk muscles. The occurrence of plasmodia in the trunk muscle showed no site preference. Its myxospores were spheroid, measuring 6.6-7.6 (7.0) µm by 5.8-6.9 (6.3) µm in apical view (width) and 5.7-6.6 (6.2) in length (n = 30), with four shell valves and a corresponding number of spheroid polar capsules. Shell valves lacked apical protrusions, but scanning electron microscopy revealed that one of the four shell valves had two semi-lunar flaps at its apical terminus. Nucleotide sequencing of the small and large subunit ribosomal RNA genes of the present isolate showed phylogenetic affinities to kudoid species characterized by spheroid myxospores, such as K. musculoliquefaciens, K. hemiscylli, and K. carcharhini, but was molecularly and morphometrically distinct from these and other kudoid species. For direct comparison, Kudoa hemiscylli was collected from the Pacific spadenose shark, Scoliodon macrorhynchos (Elasmobranchii: Carcharhiniformes: Carcharhinidae), in the South China Sea off Guangdong Province, China, and the myxospore surface of the species was observed using scanning electron microscopy. Our study describes the new host and distribution record of this kudoid species originally described from a variety of elasmobranchs in the Australian Coral Sea.


Asunto(s)
Myxozoa , Perciformes , Tiburones , Animales , Myxozoa/genética , Japón , Filogenia , Australia , Especificidad de la Especie , Peces
7.
PLoS Pathog ; 17(7): e1009752, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34288976

RESUMEN

Highly immunogenic exotoxins are used as carrier proteins because they efficiently improve the immunogenicity of polysaccharides. However, their efficiency with protein antigens remains unclear. In the current study, the candidate antigen PA0833 from Pseudomonas aeruginosa was fused to the α-hemolysin mutant HlaH35A from Staphylococcus aureus to form a HlaH35A-PA0833 fusion protein (HPF). Immunization with HPF resulted in increased PA0833-specific antibody titers, higher protective efficacy, and decreased bacterial burden and pro-inflammatory cytokine secretion compared with PA0833 immunization alone. Using fluorescently labeled antigens to track antigen uptake and delivery, we found that HlaH35A fusion significantly improved antigen uptake in injected muscles and antigen delivery to draining lymph nodes. Both in vivo and in vitro studies demonstrated that the increased antigen uptake after immunization with HPF was mainly due to monocyte- and macrophage-dependent macropinocytosis, which was probably the result of HPF binding to ADAM10, the Hla host receptor. Furthermore, a transcriptome analysis showed that several immune signaling pathways were activated by HPF, shedding light on the mechanism whereby HlaH35A fusion improves immunogenicity. Finally, the improvement in immunogenicity by HlaH35A fusion was also confirmed with two other antigens, GlnH from Klebsiella pneumoniae and the model antigen OVA, indicating that HlaH35A could serve as a universal carrier protein to improve the immunogenicity of protein antigens.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Hemolisinas/inmunología , Vacunas/inmunología , Células A549 , Animales , Exotoxinas/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células RAW 264.7 , Proteínas Recombinantes de Fusión/inmunología
8.
Int J Hyperthermia ; 40(1): 2185576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36913972

RESUMEN

OBJECTIVE: In this study, C118P, a novel vascular disrupting agent (VDA), was evaluated for its ability in improving the ablative effect of high-intensity focused ultrasound (HIFU) on uterine fibroids by reducing blood perfusion. METHODS: Eighteen female rabbits were infused with isotonic sodium chloride solution (ISCS), C118P or oxytocin for 30 min, and an HIFU ablation of the leg muscles was performed within the last 2 min. Blood pressure, heart rate and laser speckle flow imaging (LSFI) of the auricular blood vessels were recorded during perfusion. Ears with vessels, uterus and muscle ablation sites were collected and sliced for hematoxylin-eosin (HE) staining to compare vascular size, as well as nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR) staining to observe necrosis after ablation. RESULTS: Analyses revealed that the perfusion of C118P or oxytocin steadily reduced blood perfusion in the ears to approximately half by the end of the perfusion, constricted the blood vessels of the ears and uterus, and improved HIFU ablation in the muscle tissues. C118P increased blood pressure and decreased heart rate. The degree of contraction of the auricular and uterine blood vessels was positively correlated. CONCLUSION: This study confirmed that C118P could reduce blood perfusion in various tissues and had a better synergistic effect with HIFU ablation of muscle (the same tissue type as fibroids) than did oxytocin. C118P could therefore possibly replace oxytocin in facilitating HIFU ablation of uterine fibroids; however, electrocardiographic monitoring is required.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Leiomioma , Neoplasias Uterinas , Humanos , Animales , Femenino , Conejos , Neoplasias Uterinas/cirugía , Oxitocina , Estudios de Factibilidad , Resultado del Tratamiento , Leiomioma/cirugía , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos
9.
Dis Aquat Organ ; 153: 87-93, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36951257

RESUMEN

Myxobolus zhaltsanovae n. sp., is described from the gills of gibel carp Carassius gibelio found during a survey of myxozoans from the watershed of Lake Baikal, Russia, based on morphological and molecular characterizations. Plasmodia of M. zhaltsanovae n. sp. develop extravascularly and measure 500-1000 µm long, 25-100 µm wide. The myxospore is circular to oval, measuring 13.23 ± 0.09 (11.3-14.8) µm (mean ± SD, range) in length, 10.19 ± 0.07 (9.1-11.4) µm in width, and 6.49 ± 0.12 (5.4-7.2) µm in thickness. Polar capsules are unequal and subspherical; measurements of polar capsules are: length 5.62 ± 0.06 (4.7-6.7), width 3.44 ± 0.04 (2.4-4.4) µm and length 3.42 ± 0.05 (2.5-4.1), width 1.94 ± 0.04 (1.3-3.3) µm. Phylogenetic analysis with the 18S rDNA gene shows M. zhaltsanovae n. sp. as a sister species of the subclade formed by M. musseliusae, M. tsangwuensis, and M. basilamellaris, which infect common carp Cyprinus carpio.


Asunto(s)
Carpas , Cnidarios , Cyprinidae , Cipriniformes , Enfermedades de los Peces , Myxobolus , Myxozoa , Enfermedades Parasitarias en Animales , Animales , Myxobolus/genética , Filogenia , Cápsulas , Enfermedades Parasitarias en Animales/epidemiología , Branquias
10.
Syst Parasitol ; 100(6): 715-723, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37853231

RESUMEN

During an investigation of Myxobolus diversity in the Chinese longsnout catfish Tachysurus dumerili (Bleeker), a new species infecting the intracranial epidermis of the host was discovered. Upon opening the cranial cavity, several round whitish plasmodia measuring 0.55-0.80 mm in diameter were observed. Fresh spores (n= 50) were pyriform in the frontal view and fusiform in the sutural view, with a length of 15.4±0.6 (13.9-16.5) µm, width of 9.1±0.4 (8.3-9.8) µm, and thickness of 7.0±0.4 (6.3-7.9) µm. The spores had smooth shell surfaces and transparent membrane sheaths in the posterior. No folds, intercapsular appendix, and caudal appendages were observed. Two equal polar capsules were pyriform and measured 7.5±0.5 (6.7-8.7) µm in length and 3.2±0.3 (2.5-3.6) µm in width. The polar filaments were coiled with five to six turns and perpendicular to the polar capsule length. A BLAST search indicated M. dumerilii sp. n. was closely related to five Myxobolus species (with sequences similarities ranging from 90.54% to 96.52%) found in different organs of yellow catfish Tachysurus fulvidraco (Richardson), rather than the T. dumerili-infecting species M. branchiola Dong and Zhao, 2014 (with 90.5% sequence similarity). Phylogenetic analysis showed that M. dumerilii sp. n. didn't form sister clade with brain-infecting Myxobolus spp, but clustered with M. jianlinensis Gao et Zhao, 2020 and M. voremkhai Akhmerov, 1960 within the Siluriformes-clade with highly supported values, indicating that the host specificity may play a stronger signal than site infections during the evolution of Myxobolus species. Based on the morphological, ecological, and molecular differences observed between the newly discovered species and other available Myxobolus species, M. dumerilii sp. n., is proposed and described in this study.


Asunto(s)
Bagres , Enfermedades de los Peces , Myxobolus , Myxozoa , Enfermedades Parasitarias en Animales , Animales , Filogenia , Branquias , Especificidad de la Especie , China , Esporas , Encéfalo
11.
Small ; 18(6): e2105305, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34854554

RESUMEN

Developing high-efficiency electrocatalysts toward overall water splitting is an increasingly important area for sustainable energy evolution. Theoretical calculation results demonstrate that the incorporation of Ru optimizes the Gibbs free energy of adsorption of H2 O molecules and intermediates for the hydrogen/oxygen evolution reactions (HER/OER) on metal selenide sites, thus boosting electrocatalytic overall water splitting. Accordingly, ruthenium modified nickel diselenide nanosheet arrays are designed and construct on nickel foam (Ru-NiSe2 /NF). The obtained Ru-NiSe2 /NF electrode with a stable 3D structure shows greatly improved OER and HER activity in alkaline solution. Particularly, toward OER, it only requires 210 mV to obtain a current density of 10 mA cm-2 , and the formation of the intermediate nickel oxyhydroxide as active center during the OER process is captured by in situ Raman. Moreover, the overall water splitting can be driven by a voltage of merely 1.537 V to obtain 10 mA cm-2 . This work provides an available strategy for selenides to enhance electrochemical properties and inspires more studies to explore highly efficient electrocatalysts toward full water splitting.

12.
Microb Pathog ; 173(Pt A): 105810, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183959

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) and Porcine circovirus (PCV) are two important pathogens, which caused respiratory disease in pigs. PRRSV and PCV2 had caused great economic losses to the pig industry. Pigs coinfection with PCV2 and PRRSV were common in the clinic, PCV2 antibodies can be detected in most of the pigs. PCV2d and HP-PRRSV(JXA1-like) were two major viruses circulating in the pigs in China. In this study, HP-PRRSV (JXA1-like) and PCV2d were used to coinfect and (or) sequential infect 5-week-old weaned PCV2-antibody positive pigs and the clinical indications, pathological, virus load, and specific antibodies of the challenged post-weaned piglets were evaluated. Thirty 5-week-old post-weaned pigs were divided into six groups infected with PBS, PCV2, PRRSV, PCV2-PRRSV, PRRSV-PCV2, and Co-PRRSV-PCV2 according to the PCV2 specific antibodies. Pigs infected with PRRSV can experience diarrhea, increased body temperature, weight loss, and even death. The pigs in the PRRSV infected group and PRRSV-PCV2 infected group showed severe clinical symptoms, high mortality, and low average daily gain. The main pathological changes were widening of the lung interstitium, lung adhesion, and so on. The PRRSV-PCV2 infected group showed high levels of TNF-α and IL-2. In conclusion, PRRSV and PRRSV-PCV2 sequential infected pigs showed most pathogenic signs, and PCV2-PRRSV sequential infected pigs showed less pathogenicity than pigs of PCV2 and PRRSV coinfection and PRRSV monoinfection from day 10-14, partially suppressing the cytokine storm produced by PRRSV.


Asunto(s)
Infecciones por Circoviridae , Coinfección , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Coinfección/veterinaria , Virulencia , Anticuerpos Antivirales
13.
Arch Virol ; 167(12): 2519-2528, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36083350

RESUMEN

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.


Asunto(s)
COVID-19 , Vacunas de ADN , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Inmunidad Celular , Ratones Transgénicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de ADN/genética
14.
Environ Sci Technol ; 56(10): 6574-6583, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35510674

RESUMEN

Ecological qualities and resources in coasts are threatened by various human activities, such as pollution and fishery. Impact evaluation of environmental stressors over a wide coastal stretch has been limited due to lack of efficient and standardizable biodiversity monitoring and assessment tools. Integrating environmental DNA (eDNA) and ecological traits, a holistic approach was developed to assess the impact of pollution and aquaculture on fish biodiversity in Chinese coastal areas. Taking the Yalujiang Estuary (YLJK) from the Yellow Sea and the Nan'ao Island Area (NAO) from the South China Sea as cases, the performance of the eDNA biomonitoring workflow was validated. First, the eDNA results of 22 sampling sites reached more than 85% of the asymptotes of species or ASVs in each area. A total of 115 fish species in both areas were detected and NAO was 1.8 times richer than YLJK using eDNA and the fish eDNA composition was consistent with the historical data. eDNA recovered distinct variations of fish sequence, taxonomic and functional diversity, and the corresponding trends following the offshore distance between the two areas. Fish sequence diversity was decreased primarily by estuarine pollution factors (chemical oxygen demand and zinc) in the YLJK. Compared with no breeding areas, lower fish sequence diversity was in breeding areas in the NAO. By integrating ecological traits, the eDNA approach offers promising opportunities for future fish biodiversity monitoring and assessment in national and global coastal environments.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Ambiental , Animales , Biodiversidad , Ecosistema , Monitoreo del Ambiente/métodos , Peces/genética , Actividades Humanas , Humanos
15.
Parasitology ; 149(3): 314-324, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264262

RESUMEN

Microsporidia of the genus Ovipleistophora are generally parasites of fishes and aquatic crustaceans. In the current study, Ovipleistophora diplostomuri and O. ovariae were firstly reported from Culter alburnus and Xenocypris argentea and Parabramis pekinensis, respectively. Both of them exclusively infected fish ovary and were morphologically, ultrastructurally and genetically characterized. Sporogony occurred in direct contact with the host cell cytoplasm and sporophorous vesicles were not observed for the new isolates of these two Ovipleistophora species. Spores of O. ovariae were for the first time observed to be dimorphic. Genetic analysis indicated that the genetic variation in the ITS and LSU sequences was distinct among between-host O. diplostomuri isolates. High sequence variation in ITS sequence suggests that it can be a reliable molecular marker to explore the population genetics of O. diplostomuri. This is the first report of these two Ovipleistophora species in China which extends their host and geographical range.


Asunto(s)
Microsporidios , Microsporidiosis , Animales , China , Femenino , Peces , Variación Genética , Microsporidios/genética , Microsporidiosis/parasitología , Filogenia , Esporas Fúngicas
16.
J Appl Microbiol ; 133(4): 2403-2416, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35801502

RESUMEN

AIMS: This study aimed to develop a live attenuated vaccine as an effective approach to prevent streptococcosis in tilapia (Oreochromis niloticus). METHODS AND RESULTS: We eliminated the virulence factor, sialic acid (Sia) encoded by the neuA-D gene cluster from the Group B Streptococcus (Streptococcus agalactiae, GBS) strain WC1535, to construct Sia-deficient S. agalactiae (ΔSia) mutant by homologous recombination. Results showed that the ΔSia mutant had higher adherence to HEp-2 cells and lower resistance to RAW264.7 cell phagocytosis than the wild-type S. agalactiae. The virulence of the ΔSia mutant to tilapia dramatically decreased with no virulence recovery. The relative percent survivals (RPSs) were 50.00% and 54.50% at 30 days when challenged at the wild-type WC1535 doses of 1.0 × 107 and 5.0 × 107  CFU fish-1 , respectively, via intraperitoneal (IP) injection. The tilapia vaccinated via IP injection with the ΔSia mutant induced strong antibody agglutination titers. The expression of IL-1ß, TNF-α, MHC-Iα, and MHC-IIß could be enhanced in the intestine, spleen, and head kidney for tilapia administered with the ΔSia mutant. CONCLUSIONS: GBS Sia plays a critical role in adherence to HEp-2 cells and resistance to the immune clearance of RAW264.7 cells. Moreover, the ΔSia mutant is a safe, stable, and immunogenic live attenuated vaccine candidate to protect tilapia against GBS infection. SIGNIFICANCE AND IMPACT OF STUDY: The results offer more evidence of the importance of Sia in GBS and may be instructive in the control of tilapia streptococcosis.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Tilapia , Animales , Enfermedades de los Peces/prevención & control , Ácido N-Acetilneuramínico , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/genética , Factor de Necrosis Tumoral alfa , Vacunas Atenuadas , Factores de Virulencia/genética
17.
J Invertebr Pathol ; 187: 107691, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798135

RESUMEN

A new microsporidian species was described from the freshwater shrimp Caridina gracilipes collected from Lake Luoma located in Northern Jiangsu province, East China. The infected shrimps appeared generally opaque due to the presence of white cysts located in the connective tissues of the surface of the hepatopancreas. The earliest developmental stages observed were diplokaryotic meronts which were in direct contact with the host cell cytoplasm. Multinucleate sporogonial plasmodia developed into uninucleate sporoblasts which were enclosed in sporophorous vesicles. The parasite developed synchronously within an individual sporophorous vesicle. Mature spores were pyriform and monokaryotic, measuring 5.45 ± 0.18 (5.12-5.82) µm long and 3.57 ± 0.17 (3.18-3.92) µm wide. Anisofilar polar filaments coiled 10-12 turns and arranged in one row. Phylogenetic analysis based on the obtained SSU rDNA sequence indicated that the present species clustered with Triwangia caridina with high support value to form an independent branch which was placed at the basal position of a large clade of containing microsporidia of fishes, crustaceans and amphipods. Based on the morphological characters and ultrastructural features, as well as SSU rDNA-inferred phylogenetic relationships, a new species was erected and named as Triwangia gracilipes n. sp. The taxonomic affiliation of Triwangia was also primarily explored.


Asunto(s)
Decápodos , Microsporidia no Clasificados , Microsporidios , Animales , Agua Dulce , Microsporidios/genética , Filogenia
18.
J Invertebr Pathol ; 192: 107785, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671793

RESUMEN

Bacillidium spp. exclusively infect oligochaetes and these microsporidian pathogens are typically characterized by their rod-shaped spores. Seven Bacillidium spp. are presently reported from different organs of oligochaetes. Here, we describe two new Bacillidium species, Bacillidium sinensis n. sp. and Bacillidium branchilis n. sp., from coelomocytes of Branchiura sowerbyi. This is the first report of Bacillidium spp. in oligochaetes from China. Both species of Bacillidium elicit the formations of opaque xenoma-like lesions in coelomocytes of the host. A diplokaryotic nucleus occurs in all life stages of these two new Bacillidium species. Mature spores of B. sinensis are 15.9 ± 0.6 (14.7-17.1) µm long (average ± standard error, range, n = 50) and 2.5 ± 0.1 (2.3-2.7) µm wide in fresh preparations. A new type of exospore (sixteen-layered exospore) is discovered from B. sinensis n. sp. which is distinctly different from B. branchilis n. sp., and other Bacillidium spp. (double-layered exospore) reported previously. These two Bacillidium species are morphologically distinguished from each other and all Bacillidium spp. described previously in terms of hosts, infection sites, spore size, spore wall or polar filament thickness. BLASTn searches indicated that these two new microsporidian parasites are surprisingly most similar to Janacekia tainanus (94.76% for B. sinensis and 90. 2% for B. branchilis) isolated from the fat body of midge larva (Kiefferulus tainanus). Phylogenetic analysis demonstrates that the two novel taxons cluster with J. debaisieuxi, J. tainanus, and Bacillidium sp. within the Jirovecia-Bacillidium-Janacekia clade. Other available 18S rRNA gene sequences for microsporidia that infect oligochaetes include J. sinensis, B. vesiculoformis, Neoflabelliforma aurantiae, and Bacillidium sp., but these do not form a single cluster with B. sinensis and B. branchilis, but are instead dispersed through the clade. Based on the ultrastructural features and molecular characteristics, two new species within the genus Bacillidium, B. sinensis n. sp. and B. branchilis n. sp., are designated.


Asunto(s)
Microsporidios , Oligoquetos , Animales , China , ADN Ribosómico/genética , Larva/parasitología , Oligoquetos/parasitología , Filogenia
19.
J Invertebr Pathol ; 191: 107768, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569512

RESUMEN

A new microsporidian parasite, Naidispora caidianensis n. gen. n. sp. was found in coelomocytes of oligochaete Branchiura sowerbyi Beddard, 1892 from Wuhan city, Hubei Province, China. Opaque, hypertrophied coelomocytes (0.17-0.24 mm in diameter) depicted clinical signs of infection. Electron microscopy revealed a microsporidian with monokaryotic life stages. Rounded uninucleate meronts subsequently transformed into multinucleate merogonial plasmodia with masses of electron-dense projections on their plasma membrane. Electron-dense sporogonial plasmodia separated into uninucleate sporonts through rosette-like budding, and further developed into sporoblasts, enclosed by a sporophorous vesicle. Uninucleate mature spores were pyriform, measured 4.1 ± 0.1 (3.9-4.3) µm × 2.1 ± 0.07 (1.9-2.2) µm (average ± SE, range, n = 50), and contained a mushroom-like anchoring disk, bipartite polaroplast, electron-lucent posterior vacuole, trilaminar spore wall and 12-14 turns of an isofilar polar filament arranged in 2-3 ranks. The 1542 bp sequence from B. soweryi showed the highest similarity (below 80 %) with Nematocenator marisprofundi (accession number: JX463178). SSU rRNA gene-based phylogenetic analysis demonstrated that the novel taxon formed an independent clade from known microsporidian parasites. Based on the ultrastructural features and SSU rRNA gene sequence, we propose the establishment of a novel genus (Naidispora n. gen.) and species (Naidispora caidianensis n. sp.) to contain this parasite.


Asunto(s)
Microsporidios , Oligoquetos , Animales , China , Filogenia
20.
Parasitol Res ; 121(11): 3133-3145, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35852603

RESUMEN

Infections caused by multivalvulid myxosporeans belonging to genera Unicapsula and Kudoa (Cnidaria: Myxozoa) occasionally affect commercial marine fish species. Postmortem myoliquefaction caused by a variety of Kudoa spp., including K. thyrsites, and unsightly cyst or pseudocyst formation, caused by K. amamiensis, U. muscularis, and other kudoid species, negatively affect commercial values of fillets. However, multivalvulid infections are often latent and imperceptible in the market. Biodiversity, host range, and epidemiology remain to be explored. Here, myxosporean infection was detected in four commercial fish species from southern China, using morphological and molecular analyses. Three Unicapsula spp. (U. pyramidata in Nemipterus japonicus; U. pflugfelderi in Dentex angolensis transported from the Eastern Central Atlantic Ocean, off West African coast; and U. aequilobata in Decapterus macarellus) and Kudoa megacapsula in Nemipterus virgatus were observed to form pseudocysts in the myofibers of the host trunk muscles. All fish hosts identified here, except for U. pyramidata, are new records. Kudoa megacapsula was morphologically characterized by gigantic, cruciform myxospores with four wing-like shell valves morphologically comparable to previous Japanese records of the same species in aquaculture facilities, acquiring fly from China or Korea (Sphyraena pinguis and Seriola quinqueradiata, respectively). Molecular analyses established the conspecificity of the present Chinese isolate with previously recorded Japanese isolates. To our knowledge, for the first time, a partial large subunit ribosomal RNA gene sequence of K. megacapsula was obtained, showing close phylogenetic relationships with Kudoa spp. harboring cruciform myxospores, such as K. thyrsites, K. gunterae, K. whippsi, and K. lateolabracis.


Asunto(s)
Enfermedades de los Peces , Myxozoa , Enfermedades Parasitarias en Animales , Perciformes , Animales , ADN Ribosómico/genética , Enfermedades de los Peces/epidemiología , Peces , Músculo Esquelético , Enfermedades Parasitarias en Animales/epidemiología , Perciformes/genética , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA