Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 39(18): 6375-6386, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37092810

RESUMEN

Reducing the contact time of a droplet hitting a solid surface is crucial for many situations. In this work, the dynamic behavior of a low-viscosity droplet on a superhydrophobic surface, which consists of a cylindrical substrate and a macro ridge placed axially on the peak, was numerically investigated via the lattice Boltzmann method. The focus was given to the spreading and the detaching morphology of the droplet at the Weber number We = 0.84-37.8 and the cylinder-to-droplet radius ratio R* = 0.57-5.71. The ridge is found to redistribute the droplet mass and affect the impact outcomes, as well as the contact time. For each R*, a jug rebound, a stretched rebound straddling the ridge, and a split detachment occur sequentially with the increasing We. When R* does not exceed 1.71, the contact time decreases continuously with the increase in We. With R* being taken between 1.71 and 5.14, the contact time initially reduces with We and plateaus after We reaches 10.3. Once R* exceeds 5.14, the split droplets may present as a bestriding shape at We > 30.3 rather than the regular jug shape with a small We. The contact time would be decreased to a second plateau in this case. In most cases, the contact time can be shortened effectively for the droplet on a ridged cylinder compared with that of a smooth cylinder.

2.
Langmuir ; 39(45): 16023-16034, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37916520

RESUMEN

Extensive research has shown that a superhydrophobic cylindrical substrate could lead to a noncircumferential symmetry of an impacting droplet, reducing the contact time accordingly. It is of practical significance in applications, such as anti-icing, anticorrosion, and antifogging. However, few accounts have adequately addressed the off-centered impact of the droplet, despite it being more common in practice. This work investigates the dynamic behavior of a droplet off-centered impacting a superhydrophobic cylinder via the lattice Boltzmann method. The effect of the off-centered distance is primarily discussed for droplets taking various Weber numbers and cylinder sizes. The results show that the imposition of an off-center distance can further disrupt the droplet symmetry during the impact. As the off-center distance increases, the droplet movement is gradually tilted toward the offset side until it tangentially passes the cylinder side, resulting in a direct dripping mode. The dynamic features, focusing mainly on maximum spreading in the axial direction and contact time, are specifically explored. A quantitative model of the maximum spreading factor is proposed based on the equivalent transformation from the off-center impact into oblique hitting, considering the full range of off-centered distance. A preliminary contact time model is established for droplet off-centered impacting superhydrophobic cylinders by substituting the maximum spreading and the effective velocity of the liquid moving. This work aims to make an original contribution to the fundamental knowledge of droplet impact and could be of value for related applications.

3.
Langmuir ; 39(51): 19037-19047, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096493

RESUMEN

Reducing the contact time during the droplet impact on the surface is crucial for anti-icing, self-cleaning, and heat transfer optimization applications. This study aims to minimize the contact time by modifying the surface curvature to create an asymmetric impact process. Our experiments showed that the increase in Weber numbers (We) and the decrease in the ratio of surface diameter to droplet diameter (D*) intensify the asymmetry of the impact process, yielding four distinct rebound modes. Low asymmetry observes the liquid retract toward the central point (Rebound Modes 1 and 2), whereas high asymmetry yields a wing-like rebound (Rebound Modes 3 and 4). In Rebound Mode 1, increased asymmetry would lead to more extended contact due to the prolonged waiting period. Conversely, the reduction in contact time in Rebound Mode 2 occurs due to increased asymmetry with no waiting period. For Rebound Modes 3 and 4, the retraction time could be divided into three stages, generated by two liquid detachment modes from the surface. Analysis reveals that an increased asymmetry would reduce the retraction time during the first stage but prolong it during the third stage, with no significant effects on the second. Four correlations, each pertaining to a distinct impact mode, are proposed based on these analyses to describe the contact time concerning We and D* for droplets impacting a superhydrophobic cylindrical surface.

4.
Langmuir ; 38(39): 11860-11872, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36130147

RESUMEN

This study numerically investigates the effects of the Weber number (We) and cylinder-to-droplet radius ratio (R*) on the impact dynamics of a low-viscosity droplet on a hydrophobic cylinder by the lattice Boltzmann method. The intrinsic contact angle of the surface is chosen as θ0 = 122°± 2°, which ensures a representative hydrophobicity. The regime diagram of the impact dynamics in the parameter space of We versus R* is established with categories of split and nonsplit regimes. The droplet would split during impact as α = We/R* exceeds a critical value. In the nonsplit regime, the droplet bounces off the cylinder at most Weber numbers unless the impact velocity is minuscule (We < 2). The contact time of the droplet on the cylinder surface decreases with increasing R* or decreasing We, indicating bouncing is facilitated under such conditions. This can be explained by the suppressed adhesion dissipation between the droplet and surface due to a reduction in the contact area. In the split regime, sufficient kinetic energy inside the impacting droplet determines whether the whole droplet could detach from the surface. With a small cylinder (R* < 0.83) and large We (>25), the adhesion effect is weakened for the side fragments because of the small contact area, and it facilitates the dripping of fragments. For other conditions, the detachment, especially for the tiny droplet on the cylinder top, only occurs if the deformation is prominent at We > 35. Moreover, the spreading dynamics of the impacting droplet are also highlighted in this work.

5.
Langmuir ; 37(38): 11233-11241, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34528810

RESUMEN

The rebound behaviors of multiple droplets simultaneously impacting a superhydrophobic surface were investigated via lattice Boltzmann method (LBM) simulations. Three rebound regions were identified, i.e., an edge-dominating region, a center-dominating region, and an independent rebound region. The occurrence of the rebound regions strongly depends on the droplet spacing and the associated Weber and Reynolds numbers. Three new rebound morphologies, i.e., a pin-shaped morphology, a downward comb-shaped morphology, and an upward comb-shaped morphology, were presented. Intriguingly, in the edge-dominating region, the central droplets experience a secondary wetting process to significantly prolong the contact time. However, in the center-dominating region, the contact time is dramatically shortened because of the strong interactions generated by the central droplets and the central ridges. These findings provide useful information for practical applications such as self-cleaning, anticorrosion, anti-icing, and so forth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA