Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anim Biotechnol ; 34(7): 2111-2119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35584800

RESUMEN

The SMAD family member 2 (SMAD2), a member of the TGF-beta superfamily, executes a significant part in the oogenesis and ovulation process. A genome-wide selective sweep analysis also found SMAD2 was different in the fertility groups of Laoshan dairy goats; whether this gene was linked to litter size was unknown. Therefore, SMAD2 was chosen to study its effects on Shaanbei white cashmere goat reproduction and mRNA expression profile. Herein, the mRNA expression level of SMAD2 was firstly determined in female goat tissues, revealing significant differences in mRNA levels of different tissues (p < 0.05), including ovary tissue, indicating a potential role for SMAD2 in goat prolificacy. Then, using six pairs of primers, only one indel locus (P3-Del-12-bp) was found to be polymorphic in goat SMAD2 (n = 501). ANOVA also revealed that a P3-Del-12-bp deletion was significantly related to first-born litter size (p = 0.037). The Chi-square (χ2) test revealed that the ID genotype was significantly more prevalent in mothers with multiple lambs (p = 0.01), indicating that heterozygous individuals (ID) are more likely to produce multiple lambs. Our findings suggest that the SMAD2 gene's P3-Del-12-bp deletion could be used to improve goat breeds by assisting with litter size selection.


Asunto(s)
Cabras , Reproducción , Embarazo , Femenino , Animales , Ovinos/genética , Tamaño de la Camada/genética , Cabras/genética , Reproducción/genética , Genotipo , Mutación INDEL , ARN Mensajero/genética
2.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37373126

RESUMEN

Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Adipogénesis/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Adipocitos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
J Cell Physiol ; 236(1): 601-611, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32542663

RESUMEN

Adipogenesis is closely related to human health, livestock growth, and meat quality. A previous study identified that bovine lncFAM200B promoter has high activity in 3T3-L1 mice preadipocytes. Thus, lncFAM200B was a candidate gene for regulating adipogenesis. This study aimed to uncover the role of lncFAM200B in bovine adipogenesis and identify novel genetic variations within the bovine lncFAM200B gene. An expression analysis found that lncFAM200B was expressed higher in fat than that in muscle, but the difference was not related to the total methylation level of the promoter active region. Moreover, the expression of lncFAM200B exhibited a significant positive correlation with the expression of C/EBPa during bovine adipocyte differentiation. To uncover the function of lncFAM200B, the full-length lncFAM200B was cloned, and four kinds of transcript variants were found. Protein-coding potential prediction and prokaryotic expression system analysis showed that these four transcript variants were noncoding RNAs. The quantitative reverse-transcription polymerase chain reaction and 5-ethynyl-2'-deoxyuridine assay showed that the transcript variants decreased the messenger RNA expression of Cyclin D1 and inhibited the proliferation of bovine preadipocytes. Considering the important role of lncFAM200B in adipogenesis, we identified genetic variations in lncFAM200B. Three single-nucleotide polymorphisms (SNPs) were revealed, and two of them (SNP1 and SNP3) were associated with Nanyang cattle body measurement traits. In conclusion, this study found that bovine lncFAM200B inhibited preadipocyte proliferation, and two genetic variations of lncFAM200B could be used in cattle breeding.


Asunto(s)
Adipocitos/fisiología , Adipogénesis/genética , Empalme Alternativo/genética , Diferenciación Celular/genética , ARN Largo no Codificante/genética , Células 3T3-L1 , Animales , Bovinos , Proliferación Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética
4.
Genomics ; 112(6): 5115-5121, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32949683

RESUMEN

Transcriptome sequencing analyses have suggested that sperm associated antigen 17 protein gene (SPAG17) may play important regulating roles in litter size. In this study, the expression profiles and genetic variations of the SPAG17 were studied in Shaanbei White Cashmere (SBWC) goats (n=1567). SPAG17 was highly expressed in testis and ovary of SBWC goats. At different developmental stages, it also continued to be highly expressed in testis. In addition, two variations of SPAG17, one indel locus and one copy number variation locus, were significantly associated with first-born litter size. Joint analysis results suggested that two polymorphic loci of the SPAG17 gene may regulate host gene expression in goat ovary and testis. Overall, the results indicated the important role of SPAG17 in the reproductive process of goats.


Asunto(s)
Antígenos de Superficie/genética , Cabras/genética , Ovario/metabolismo , Testículo/metabolismo , Animales , Antígenos de Superficie/metabolismo , Secuencia de Bases , Secuencia Conservada , Variaciones en el Número de Copia de ADN , Femenino , Cabras/metabolismo , Mutación INDEL , Desequilibrio de Ligamiento , Tamaño de la Camada/genética , Masculino , ARN Mensajero/metabolismo
5.
Anim Biotechnol ; 31(2): 107-114, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30652937

RESUMEN

Paired-like homeodomain 2 (PITX2), a key gene in hypothalamic-pituitary-adrena axis, influences animal growth and development. The objective of this study was to identify the association of the functional genetic variations within goat PITX2 gene with growth traits and mRNA expression levels. According to the reported single nucleotide polymorphisms (SNPs) information in Guanzhong dairy goat (GZDG), we identified genotypes of the known SNPs in Hainan black goat (HNBG). Association analysis uncovered that the SNPs of AC_000163: g.18117T > C, g.18161C > G and g.18353T > C loci were significantly associated with several growth traits (e.g., body height and body length) in HNBG and GZDG breeds. According to the quantitative real-time PCR assay, ß-Actin and ribosomal protein L19 (RPL19) were the most stable expressed housekeeping genes in heart and skeletal muscle, respectively; meanwhile, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was the most stable expressed housekeeping gene in the other tissues. Based on the best housekeeping gene of varied tissues, we found the different genotypes of above loci were significantly associated with PITX2 mRNA expression in heart, muscle and small intestine. Briefly, the genetic variants of goat PITX2 associating with mRNA expression affected growth traits significantly, which would benefit for goat breeding in the future.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Variación Genética , Cabras/genética , Proteínas de Homeodominio/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Animales , Genotipo , Cabras/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Distribución Tisular , Factores de Transcripción/genética
6.
J Cell Physiol ; 234(7): 11037-11046, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30697738

RESUMEN

Adipocyte growth and development are complex and precisely orchestrated processes. Several microRNAs have been identified as critical regulators of the adipocyte growth and development. Recently, bta-miR-204 was found to be involved in adipogenesis; however, the underlying molecular mechanism involved in bta-miR-204-mediated regulation of proliferation, differentiation, and apoptosis of adipocytes is not fully understood or elucidated. In this study, quantitative real-time polymerase chain reaction (qRT-PCR), Cell Counting Kit-8, EdU, flow cytometer, Oil Red O staining, and the western blot assays were used to assess the role of bta-miR-204 in adipocyte growth and development. Overexpression of bta-miR-204 had no significant effect on 3T3-L1 cell proliferation. The forced expression of bta-miR-204 promoted 3T3-L1 cell differentiation. Meanwhile, overexpression of bta-miR-204 upregulated the expression of Bax and downregulated the expression of Bcl-2 both at messenger RNA and protein levels, which suggested that bta-miR-204 can promote 3T3-L1 cell apoptosis. Using bioinformatic analysis, dual-luciferase reporter system and qRT-PCR, TGFBR2, and ELOVL6 were identified as the direct target genes of bta-miR-204. Therefore, our study provides a novel insight into the role of bta-miR-204 in the regulation of adipocyte growth and development, which may provide a novel therapeutic alternative against obesity.


Asunto(s)
Adipocitos/fisiología , Apoptosis/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , MicroARNs/metabolismo , Células 3T3-L1 , Animales , Bovinos , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , MicroARNs/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo
7.
Anim Biotechnol ; 30(2): 159-165, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29631473

RESUMEN

Adipocyte differentiation-associated long noncoding RNA (ADNCR) is a newly discovered lncRNA. It plays function by targeting miR-204 to significantly regulates the expression of the target SIRT1 gene in preadipocytes both at the level of mRNA and protein, thereby inhibiting adipogenesis. The tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) strategy is fast and accuracy at a negligible cost for SNP genotyping in large samples. In the study, a novel SNP g.1263T>A in intron 1 of bovine ADNCR gene was found. Herein, the T-ARMS-PCR assay was applied to detect the genotypes of the novel SNP of bovine ADNCR gene in 1017 individuals from seven cattle breeds and validated the accuracy by DNA sequencing assay of ninety animals representing three different genotypes. The concordance between two different methods was 100%. The association analysis indicated that this locus was significantly associated with the body weight (P = 0.010), chest girth (P = 0.014) and rump length (P = 0.038) in Jinnan cattle, hucklebone width (P = 0.032) in Qinchuan cattle, the cannon circumference (P = 0.019) in Jinjiang cattle, respectively. These novel findings may be used for marker-assisted selection (MAS) and contribute to the performance of beef cattle in the future.


Asunto(s)
Bovinos/genética , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética , Adipocitos/fisiología , Animales , Peso Corporal/genética , Cruzamiento , Bovinos/crecimiento & desarrollo , Diferenciación Celular/genética , Femenino , Estudios de Asociación Genética/veterinaria , Sitios Genéticos/genética , Marcadores Genéticos/genética , Genotipo , Masculino , Reacción en Cadena de la Polimerasa/veterinaria
8.
Int J Biol Macromol ; 255: 127942, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979751

RESUMEN

A systematic analysis of genes related to reproduction is crucial for obtaining a comprehensive understanding of the molecular mechanisms that underlie male reproductive traits in mammals. Here, we utilized 435 goat transcriptome datasets to unveil the testicular tissue-specific genes (TSGs), allele-specific expression (ASE) genes and their uncharacterized transcriptional features related to male goat reproduction. Results showed a total of 1790 TSGs were identified in goat testis, which was the most among all tissues. GO enrichment analyses suggested that testicular TSGs were mainly involved in spermatogenesis, multicellular organism development, spermatid development, and flagellated sperm motility. Subsequently, a total of 95 highly conserved TSGs (HCTSGs), 508 middle conserved TSGs (MCTSGs) and 42 no conserved TSGs (NCTSGs) were identified in goat testis. GO enrichment analyses suggested that the HCTSGs and MCTSGs has a more important association with male reproduction than NCTSGs. Additionally, we identified 644 ASE genes, including 88 tissue-specific ASE (TS-ASE) genes (e.g., FSIP2, TDRD9). GO enrichment analyses indicated that both ASE genes and TS-ASE genes were associated with goat male reproduction. Overall, this study revealed an extensive gene set involved in the regulation of male goat reproduction and their dynamic transcription patterns. Data reported here provide valuable insights for a further improvement of the economic benefits of goats as well as future treatments for male infertility.


Asunto(s)
Cabras , Transcriptoma , Animales , Masculino , Transcriptoma/genética , Cabras/genética , Motilidad Espermática , Testículo/metabolismo , Reproducción/genética
9.
BMC Genom Data ; 25(1): 54, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849746

RESUMEN

BACKGROUND: The analysis of differentially expressed genes in muscle tissues of sheep at different ages is helpful to analyze the gene expression trends during muscle development. In this study, the longissimus dorsi muscle of pure breeding Hu sheep (H), Suffolk sheep and Hu sheep hybrid F1 generation (SH) and East Friesian and Hu sheep hybrid sheep (EHH) three strains of sheep born 2 days (B2) and 8 months (M8) was used as the research object, and transcriptome sequencing technology was used to identify the differentially expressed genes of sheep longissimus dorsi muscle in these two stages. Subsequently, GO and KEGG enrichment analysis were performed on the differential genes. Nine differentially expressed genes were randomly selected and their expression levels were verified by qRT-PCR. RESULTS: The results showed that 842, 1301 and 1137 differentially expressed genes were identified in H group, SH group and EHH group, respectively. Among them, 191 differential genes were enriched in these three strains, including pre-folding protein subunit 6 (PFDN6), DnaJ heat shock protein family member A4 (DNAJA4), myosin heavy chain 8 (MYH8) and so on. GO and KEGG enrichment analysis was performed on 191 differentially expressed genes shared by the three strains to determine common biological pathways. The results showed that the differentially expressed genes were significantly enriched in ribosomes, unfolded protein binding, FoxO signaling pathway, glycolysis / glycogen generation and glutathione signaling pathway that regulate muscle protein synthesis and energy metabolism. The results of qRT-PCR were consistent with transcriptome sequencing, which proved that the sequencing results were reliable. CONCLUSIONS: Overall, this study revealed the important genes and signaling pathways related to sheep skeletal muscle development, and the result laid a foundation for further understanding the mechanism of sheep skeletal muscle development.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético , Animales , Ovinos/genética , Ovinos/crecimiento & desarrollo , Ovinos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Transcriptoma , Desarrollo de Músculos/genética
10.
Gene ; 898: 148095, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38128793

RESUMEN

Osteogenesis is a complex multilevel process regulated by multiple genes. The GATA binding protein 4 (GATA4) gene has been extensively studied for its pivotal role in bone genesis and bone differentiation. However, its relationship with the growth traits of Shaanbei white cashmere (SBWC) and Guizhou black (GB) goats remains unclear. This work aims to investigate the potential influence of genetic mutations in the GATA4 gene on the growth traits goats. Thus, two Insertion/deletion (InDel) polymorphisms (8-bp-InDel and 9-bp-InDel) were screened and detected in a total of 1161 goats (including 980 SBWC goats and 181 GB goats) using PCR and agarose gel electrophoresis. The analyses revealed that there were two genotypes (ID and DD) for these two loci. In SBWC goats, 8-bp-InDel and 9-bp-InDel loci were significantly associated with heart girth (HG) and hip width (HW). Notably, individuals with DD genotype of 8-bp-InDel locus were superior while those with DD genotype of 9-bp-InDel locus were inferior. Correlation analyses of the four combined genotypes revealed significant associations with cannon circumference (CC), body height (BH), HG and HW. This work provides a foundation for the application of molecular marker-assisted selection (MAS) in goat breeding programs. Furthermore, the findings highlight the potential of the GATA4 gene and its genetic variations as valuable indicators for selecting goats with desirable growth traits.


Asunto(s)
Cabras , Mutación INDEL , Animales , Genotipo , Cabras/genética , Mutación , Fenotipo
11.
Animals (Basel) ; 14(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540045

RESUMEN

Reactive oxygen species (ROS) are important factors that lead to a decline in sperm quality during semen preservation. Excessive ROS accumulation disrupts the balance of the antioxidant system in sperm and causes lipid oxidative damage, destroying its structure and function. Curcumin is a natural plant extract that neutralizes ROS and enhances the function of endogenous antioxidant enzymes. The effect of curcumin on the preservation of sheep semen has not been reported. This study aims to determine the effects of curcumin on refrigerated sperm (4 °C) and analyze the effects of curcumin on sperm metabolism from a Chinese native sheep (Hu sheep). The results showed that adding curcumin significantly improved (p < 0.05) the viability of refrigerated sperm at an optimal concentration of 20 µmol/L, and the plasma membrane and acrosome integrity in semen were significantly improved (p < 0.05). Adding curcumin to refrigerated semen significantly increased (p < 0.05) the levels of antioxidant enzymes (T-AOC, CAT, and SOD) and significantly decreased (p < 0.05) ROS production. A total of 13,796 metabolites in sperm and 20,581 metabolites in negative groups and curcumin-supplemented groups were identified using liquid chromatography-mass spectrometry. The proportion of lipids and lipid-like molecules among all metabolites in the sperm was the highest, regardless of treatment. We identified 50 differentially expressed metabolites (DEMs) in sperm between the negative control and curcumin-treated groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEMs were mainly enriched in the calcium signaling pathway, phospholipase D signaling pathway, sphingolipid metabolism, steroid hormone biosynthesis, 2-oxocarboxylic acid metabolism, and other metabolic pathways. The findings indicate that the addition of an appropriate concentration (20 µm/L) of curcumin to sheep semen can effectively suppress reactive oxygen species (ROS) production and extend the duration of cryopreservation (4 °C) by modulating the expression of sphingosine-1-phosphate, dehydroepiandrosterone sulfate, phytosphingosine, and other metabolites of semen. This discovery offers a novel approach to enhancing the cryogenic preservation of sheep semen.

12.
Cells ; 12(4)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831206

RESUMEN

The Homeobox A11 (HOXA11) gene regulates limb skeletal development and muscle growth, thus, it was selected as a candidate gene for bovine carcass traits. In this study, we analyzed the mRNA expression level of HOXA11 in various tissues and cells, and determined the genetic variations in the HOXA11 gene, which might be used as molecular markers for cattle breeding. The mRNA expression profiles of HOXA11 in bovine different tissues showed that HOXA11 was highly expressed in both fat and muscle. The gene expression trend of HOXA11 in myoblasts and adipocytes indicated that HOXA11 might be involved in the differentiation of bovine myoblasts and adipocytes. The data in the Ensembl database showed that there are two putative insertion/deletion (InDel) polymorphisms in the bovine HOXA11 gene. The insertion site (rs515880802) was located in the upstream region (NC_037331.1: g. 68853364-68853365) and named as P1-Ins-4-bp, and the deletion site (rs517582703) was located in the intronic region (NC_037331.1: g. 68859510-68859517) and named as P2-Del-8-bp. These polymorphisms within the HOXA11 gene were identified and genotyped by PCR amplification, agarose gel electrophoresis and DNA sequencing in the 640 Shandong Black Cattle Genetic Resource (SDBCGR) population. Moreover, the mutation frequency was very low after detection, so the mathematical expectation (ME) method was used for detection. Statistical analysis demonstrated that P1-Ins-4-bp was significantly correlated with the beef shoulder (p = 0.012) and tongue root (p = 0.004). Meanwhile, P2-Del-8-bp displayed a significant correlation with the back tendon (p = 0.008), money tendon (p = 2.84 × 10-4), thick flank (p = 0.034), beef shin (p = 9.09 × 10-7), triangle thick flank (p = 0.04), triangle flank (p = 1.00 × 10-6), rump (p = 0.018) and small tenderloin (p = 0.043) in the female SDBCGR population. In summary, these outcomes may provide a new perspective for accelerating the molecular breeding of cattle through marker-assisted selection (MAS) strategies.


Asunto(s)
Genes Homeobox , Polimorfismo de Nucleótido Simple , Bovinos , Animales , Femenino , ARN Mensajero , RNA-Seq , Fenotipo
13.
Anim Biosci ; 36(12): 1775-1784, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37402449

RESUMEN

OBJECTIVE: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. METHODS: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. RESULTS: It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. CONCLUSION: These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.

15.
J Agric Food Chem ; 70(22): 6698-6708, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35610559

RESUMEN

Adipogenesis describes the proliferation, differentiation, and apoptosis of mature adipocytes from primary adipocytes and is regulated by post-transcriptional modifications. Circular RNAs (circRNAs) play critical roles in mammalian development and physiology. However, the circRNA-mediated regulation of adipogenesis remains poorly understood. We profiled circRNA expression during bovine primary adipogenesis, detecting 16 circRNA candidates, including circPPARγ, which was abundant in the adipose tissue. Overexpression (overexpression plasmids) and interference (small interfering RNAs) with circPPARγ in bovine primary adipocytes, and proliferation, differentiation, and apoptosis were analyzed using EdU (5-ethynyl-2'-deoxyuridine) cell proliferation, cell counting kit-8, flow cytometry, TdT-mediated dUTP nick-end labeling apoptosis assay, Oil Red O staining, quantitative real-time PCR, and western blotting assays, which showed that circPPARγ facilitates adipocyte differentiation and inhibits proliferation and apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation assays indicated that circPPARγ binds miR-92a-3p and YinYang 1 (YY1). A novel regulatory pathway regulating adipogenesis and adipose deposition was revealed.


Asunto(s)
MicroARNs , ARN Circular , Adipogénesis/genética , Animales , Bovinos , Diferenciación Celular , Proliferación Celular , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
16.
Front Vet Sci ; 9: 887520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647086

RESUMEN

Global classification of bovine genes is important for studies of biology and tissue-specific gene editing. Herein, we classified the tissue-specific expressed genes and uncovered an important variation in the promoter region of an adipose tissue-specific lncRNA gene. Statistical analysis demonstrated that the number of genes specifically expressed in the brain was the highest, while it was lowest in the adipose tissues. A total of 1,575 genes were found to be significantly higher expressed in adipose tissues. Bioinformatic analysis and qRT-PCR were used to uncover the expression profiles of the 23 adipose tissue-specific and highly expressed genes in 8 tissues. The results showed that most of the 23 genes have higher expression level in adipose tissue. Besides, we detected a 12 bp insertion/deletion (indel) variation (rs720343880) in the promoter region of an adipose tissue-specific lncRNA gene (LOC100847835). The different genotypes of this variation were associated with carcass traits of cattle. Therefore, the outcomes of the present study can be used as a starting point to explore the development of cattle organs and tissues, as well as to improve the quality of cattle products.

17.
Animals (Basel) ; 12(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35804515

RESUMEN

As an important part of the circadian rhythm, the circadian regulation factor 2 of cryptochrome (CRY2), regulates many physiological functions. Previous studies have reported that CRY2 is involved in growth and development. However, the relationship between CRY2 gene polymorphism and cattle carcass traits remains unclear. The aim of this study was to detect the possible variations of the CRY2 gene and elucidate the association between the CRY2 gene and carcass traits in the Shandong Black Cattle Genetic Resource (SDBCGR) population (n = 705). We identified a 24-bp deletion variation (CRY2-P6) and a 6-bp insertion variation (CRY2-P7) in the bovine CRY2 gene. The frequency of the homozygous II genotype is higher than the heterozygous ID genotype in both two loci. In addition, CRY2-P6 was consistent with HWE (p > 0.05). Importantly, the CRY2-P6 variant was significantly associated with 12 carcass traits, including gross weight, ribeye, high rib, thick flank, etc. and the II was the dominant genotype. The CRY2-P7 site was also significantly correlated with five traits (gross weight, beef-tongue, etc.). Collectively, these outcomes indicated that the two Indel loci in the CRY2 gene could be used for marker-assisted selection of cattle carcass traits.

18.
J Agric Food Chem ; 70(44): 14312-14328, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36269615

RESUMEN

The proliferation and differentiation of preadipocytes is an important factor determining bovine fat development, which is closely related to the feed conversion ratio, carcass traits, and beef quality. The purpose of this study was to identify the effects of candidate circRNA and miRNA on the proliferation and differentiation of bovine preadipocytes in order to provide basic materials for molecular breeding in cattle. circRNA sequencing was performed on bovine adipocyte samples at different differentiation time points, and a total of 1830 differentially expressed circRNAs were identified. Among them, circBDP1, derived from the bovine BDP1 gene, has potential binding sites for miR-204 (known as a regulator of bovine fat development) and miR-181b, which gives us a hint that circBDP1 may regulate bovine fat development by adsorbing miR-204 and miR-181b. Here, our results revealed that circBDP1 overexpression promoted the proliferation and differentiation of bovine preadipocytes. The miRNA profile of bovine adipocytes at different differentiation time points was also analyzed using the small RNA sequencing method, and a total of 89 differentially expressed miRNAs were identified, including miR-204 and miR-181b. As expected, dual-luciferase reporter results showed that circBDP1 competitively adsorbed miR-181b and miR-204. Overexpression and interference of miR-181b in bovine preadipocytes and 3T3-L1 showed that miR-181b promoted the proliferation and differentiation of preadipocytes. Further results displayed that miR-181b and miR-204 simultaneously targeted the SIRT1 gene, and miR-204 also targeted the 3' UTR region of the TRARG1 gene. In summary, this study found that miR-181b and miR-204 were involved in fat development by targeting SIRT1 and TRARG1. The results of this study will lay a foundation for the research of fat development and beef cattle industry.


Asunto(s)
MicroARNs , ARN Circular , Animales , Bovinos/genética , Ratones , Regiones no Traducidas 3' , Células 3T3-L1 , Adipocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Supresoras de Tumor
19.
Theriogenology ; 193: 11-19, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116245

RESUMEN

SMAD family member 1 (SMAD1) is phosphorylated and activated by the BMP receptors, which help regulate ovulation rate, cell growth, apoptosis, and development. Previously, the genome-wide association study revealed that it has been associated with fecundity in sheep. However, its effect on litter size has not been investigated in goats. Therefore, this study aimed to determine the level of SMAD1 mRNA expression in various tissues and to identify its polymorphisms and their association with litter size in Shaanbei white cashmere goat (SBWC). As a result, RT-qPCR analysis showed that SMAD1 was expressed in various tissues in female SBWC goats, including the ovary (P < 0.05). Importantly, the mRNA expression level in the ovaries of mothers of multi-lambs had a higher level than the mothers of single lambs (P < 0.05). Moreover, two InDels (18-bp and 7-bp) in intron 1 of SMAD1 were polymorphic among ten potential loci. Both 18-bp and 7-bp InDels were significantly correlated with litter size (P = 0.014) and (P = 0.0001), respectively. As shown by the chi-squared test, genotypic distributions of 18-bp and 7-bp were significantly distinct between single-lamb (P = 0.02) and multi-lamb mothers (P = 0.002). Our findings confirm that two InDels in SMAD1 were significantly associated with litter size and suggest that they could be used to improve fertility traits in goat breeding strategies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Cabras , Animales , Receptores de Proteínas Morfogenéticas Óseas/genética , Familia , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Cabras/fisiología , Tamaño de la Camada/genética , Embarazo , ARN Mensajero/genética , Ovinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA