Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(25): 4826-4840.e17, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36402135

RESUMEN

Congenital Zika virus (ZIKV) infection results in neurodevelopmental deficits in up to 14% of infants born to ZIKV-infected mothers. Neutralizing antibodies are a critical component of protective immunity. Here, we demonstrate that plasma IgM contributes to ZIKV immunity in pregnancy, mediating neutralization up to 3 months post-symptoms. From a ZIKV-infected pregnant woman, we isolated a pentameric ZIKV-specific IgM (DH1017.IgM) that exhibited ultrapotent ZIKV neutralization dependent on the IgM isotype. DH1017.IgM targets an envelope dimer epitope within domain II. The epitope arrangement on the virion is compatible with concurrent engagement of all ten antigen-binding sites of DH1017.IgM, a solution not available to IgG. DH1017.IgM protected mice against viremia upon lethal ZIKV challenge more efficiently than when expressed as an IgG. Our findings identify a role for antibodies of the IgM isotype in protection against ZIKV and posit DH1017.IgM as a safe and effective candidate immunotherapeutic, particularly during pregnancy.


Asunto(s)
Inmunoglobulina M , Embarazo , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Ratones , Embarazo/inmunología , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Pruebas de Neutralización , Infección por el Virus Zika/inmunología , Inmunoglobulina M/inmunología , Inmunoglobulina M/aislamiento & purificación
2.
Mol Ther ; 29(6): 1970-1983, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33823303

RESUMEN

A self-transcribing and replicating RNA (STARR)-based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full-length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolongs SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell-mediated immunity produced a strong viral antigen-specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for interferon (IFN)γ and interleukin-4 (IL-4)-positive CD4+ T helper (Th) lymphocytes as well as anti-spike glycoprotein immunoglobulin G (IgG)2a/IgG1 ratios supported a strong Th1-dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 µg and 10 µg doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of LUNAR-COV19 as a single-dose vaccine.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/administración & dosificación , Alphavirus/genética , Alphavirus/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/biosíntesis , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Femenino , Expresión Génica , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Ratones , Ratones Transgénicos , Replicón/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/virología , Transgenes , Resultado del Tratamiento , Vacunación/métodos , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de ARNm
3.
Proc Natl Acad Sci U S A ; 111(7): 2722-7, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550301

RESUMEN

Viruses must evade the host innate defenses for replication and dengue is no exception. During secondary infection with a heterologous dengue virus (DENV) serotype, DENV is opsonized with sub- or nonneutralizing antibodies that enhance infection of monocytes, macrophages, and dendritic cells via the Fc-gamma receptor (FcγR), a process termed antibody-dependent enhancement of DENV infection. However, this enhancement of DENV infection is curious as cross-linking of activating FcγRs signals an early antiviral response by inducing the type-I IFN-stimulated genes (ISGs). Entry through activating FcγR would thus place DENV in an intracellular environment unfavorable for enhanced replication. Here we demonstrate that, to escape this antiviral response, antibody-opsonized DENV coligates leukocyte Ig-like receptor-B1 (LILRB1) to inhibit FcγR signaling for ISG expression. This immunoreceptor tyrosine-based inhibition motif-bearing receptor recruits Src homology phosphatase-1 to dephosphorylate spleen tyrosine kinase (Syk). As Syk is a key intermediate of FcγR signaling, LILRB1 coligation resulted in reduced ISG expression for enhanced DENV replication. Our findings suggest a unique mechanism for DENV to evade an early antiviral response for enhanced infection.


Asunto(s)
Acrecentamiento Dependiente de Anticuerpo/fisiología , Antígenos CD/metabolismo , Virus del Dengue/metabolismo , Dengue/fisiopatología , Receptores Inmunológicos/metabolismo , Acrecentamiento Dependiente de Anticuerpo/inmunología , Western Blotting , Línea Celular , Dengue/inmunología , Virus del Dengue/fisiología , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1 , Análisis por Micromatrices , ARN Interferente Pequeño/genética , Receptores de IgG/metabolismo
4.
PLoS Pathog ; 10(4): e1004031, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699622

RESUMEN

Dengue (DEN) represents the most serious arthropod-borne viral disease. DEN clinical manifestations range from mild febrile illness to life-threatening hemorrhage and vascular leakage. Early epidemiological observations reported that infants born to DEN-immune mothers were at greater risk to develop the severe forms of the disease upon infection with any serotype of dengue virus (DENV). From these observations emerged the hypothesis of antibody-dependent enhancement (ADE) of disease severity, whereby maternally acquired anti-DENV antibodies cross-react but fail to neutralize DENV particles, resulting in higher viremia that correlates with increased disease severity. Although in vitro and in vivo experimental set ups have indirectly supported the ADE hypothesis, direct experimental evidence has been missing. Furthermore, a recent epidemiological study has challenged the influence of maternal antibodies in disease outcome. Here we have developed a mouse model of ADE where DENV2 infection of young mice born to DENV1-immune mothers led to earlier death which correlated with higher viremia and increased vascular leakage compared to DENV2-infected mice born to dengue naïve mothers. In this ADE model we demonstrated the role of TNF-α in DEN-induced vascular leakage. Furthermore, upon infection with an attenuated DENV2 mutant strain, mice born to DENV1-immune mothers developed lethal disease accompanied by vascular leakage whereas infected mice born to dengue naïve mothers did no display any clinical manifestation. In vitro ELISA and ADE assays confirmed the cross-reactive and enhancing properties towards DENV2 of the serum from mice born to DENV1-immune mothers. Lastly, age-dependent susceptibility to disease enhancement was observed in mice born to DENV1-immune mothers, thus reproducing epidemiological observations. Overall, this work provides direct in vivo demonstration of the role of maternally acquired heterotypic dengue antibodies in the enhancement of dengue disease severity and offers a unique opportunity to further decipher the mechanisms involved.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dengue/inmunología , Inmunidad Materno-Adquirida , Animales , Cricetinae , Reacciones Cruzadas/inmunología , Dengue/patología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Mutantes , Embarazo , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/inmunología
5.
Proc Natl Acad Sci U S A ; 108(30): 12479-84, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746897

RESUMEN

The interaction of antibodies, dengue virus (DENV), and monocytes can result in either immunity or enhanced virus infection. These opposing outcomes of dengue antibodies have hampered dengue vaccine development. Recent studies have shown that antibodies neutralize DENV by either preventing virus attachment to cellular receptors or inhibiting viral fusion intracellularly. However, whether the antibody blocks attachment or fusion, the resulting immune complexes are expected to be phagocytosed by Fc gamma receptor (FcγR)-bearing cells and cleared from circulation. This suggests that only antibodies that are able to block fusion intracellularly would be able to neutralize DENV upon FcγR-mediated uptake by monocytes whereas other antibodies would have resulted in enhancement of DENV replication. Using convalescent sera from dengue patients, we observed that neutralization of the homologous serotypes occurred despite FcγR-mediated uptake. However, FcγR-mediated uptake appeared to be inhibited when neutralized heterologous DENV serotypes were used instead. We demonstrate that this inhibition occurred through the formation of viral aggregates by antibodies in a concentration-dependent manner. Aggregation of viruses enabled antibodies to cross-link the inhibitory FcγRIIB, which is expressed at low levels but which inhibits FcγR-mediated phagocytosis and hence prevents antibody-dependent enhancement of DENV infection in monocytes.


Asunto(s)
Dengue/inmunología , Receptores de IgG/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Complejo Antígeno-Anticuerpo/sangre , Línea Celular , Dengue/virología , Virus del Dengue/clasificación , Virus del Dengue/inmunología , Humanos , Técnicas In Vitro , Monocitos/inmunología , Monocitos/virología , Fagocitosis , ARN Interferente Pequeño/genética , Receptores de IgG/antagonistas & inhibidores , Receptores de IgG/genética , Serotipificación , Transfección
6.
EMBO Mol Med ; 16(6): 1310-1323, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38745062

RESUMEN

Vaccination has successfully controlled several infectious diseases although better vaccines remain desirable. Host response to vaccination studies have identified correlates of vaccine immunogenicity that could be useful to guide development and selection of future vaccines. However, it remains unclear whether these findings represent mere statistical correlations or reflect functional associations with vaccine immunogenicity. Functional associations, rather than statistical correlates, would offer mechanistic insights into vaccine-induced adaptive immunity. Through a human experimental study to test the immunomodulatory properties of metformin, an anti-diabetic drug, we chanced upon a functional determinant of neutralizing antibodies. Although vaccine viremia is a known correlate of antibody response, we found that in healthy volunteers with no detectable or low yellow fever 17D viremia, metformin-treated volunteers elicited higher neutralizing antibody titers than placebo-treated volunteers. Transcriptional and metabolomic analyses collectively showed that a brief course of metformin, started 3 days prior to YF17D vaccination and stopped at 3 days after vaccination, expanded oxidative phosphorylation and protein translation capacities. These increased capacities directly correlated with YF17D neutralizing antibody titers, with reduced reactive oxygen species response compared to placebo-treated volunteers. Our findings thus demonstrate a functional association between cellular respiration and vaccine-induced humoral immunity and suggest potential approaches to enhancing vaccine immunogenicity.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Metformina , Vacuna contra la Fiebre Amarilla , Humanos , Vacuna contra la Fiebre Amarilla/inmunología , Vacuna contra la Fiebre Amarilla/administración & dosificación , Metformina/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Inmunogenicidad Vacunal , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Adulto , Masculino , Femenino
7.
EBioMedicine ; 89: 104472, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801619

RESUMEN

BACKGROUND: Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS: We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS: The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION: Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING: K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.


Asunto(s)
COVID-19 , Humanos , Anciano , Cadenas alfa de HLA-DR/genética , SARS-CoV-2 , Leucocitos Mononucleares , Pronóstico
8.
STAR Protoc ; 3(2): 101297, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35463466

RESUMEN

Aberrant cellular bioenergetics has detrimental consequences in host cells. For instance, pathogenic Zika virus strains can suppress mitochondria respiration and glycolytic functions, disrupting cellular bioenergetics that leads to apoptosis. Herein, we describe methods for flavivirus propagation, titering and infection, cell preparation, and procedures for mitochondrial and glycolytic stress tests. The protocol enables assessment of cellular respiration and glycolytic flux in flavivirus-infected cells. For complete details on the use and execution of this protocol, please refer to Yau et al. (2021).


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Metabolismo Energético , Glucólisis , Humanos , Mitocondrias/metabolismo , Infección por el Virus Zika/metabolismo
9.
NPJ Vaccines ; 7(1): 161, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513697

RESUMEN

Coronavirus disease-19 (Covid-19) pandemic have demonstrated the importantance of vaccines in disease prevention. Self-amplifying mRNA vaccines could be another option for disease prevention if demonstrated to be safe and immunogenic. Phase 1 of this randomized, double-blinded, placebo-controlled trial (N = 42) assessed the safety, tolerability, and immunogenicity in healthy young and older adults of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N = 64) tested two-doses of ARCT-021 given 28 days apart. During phase 1, ARCT-021 was well tolerated up to one 7.5 µg dose and two 5.0 µg doses. Local solicited AEs, namely injection-site pain and tenderness were more common in ARCT-021vaccinated, while systemic solicited AEs, mainly fatigue, headache and myalgia were reported in 62.8% and 46.4% of ARCT-021 and placebo recipients, respectively. Seroconversion rate for anti-S IgG was 100% in all cohorts, except for the 1 µg one-dose in younger adults and the 7.5 µg one-dose in older adults. Anti-S IgG and neutralizing antibody titers showed a general increase with increasing dose, and overlapped with titers in Covid-19 convalescent patients. T-cell responses were also observed in response to stimulation with S-protein peptides. Taken collectively, ARCT-021 is immunogenic and has favorable safety profile for further development.

11.
Antiviral Res ; 193: 105138, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246735

RESUMEN

The global spread of SARS-CoV-2 has made millions ill with COVID-19 and even more from the economic fallout of this pandemic. Our quest to test new therapeutics and vaccines require small animal models that replicate disease phenotypes seen in COVID-19 cases. Rodent models of SARS-CoV-2 infection thus far have shown mild to moderate pulmonary disease; mortality, if any, has been associated with prominent signs of central nervous system (CNS) infection and dysfunction. Here we describe the isolation of SARS-CoV-2 variants with propensity for either pulmonary or CNS infection. Using a wild-type SARS-CoV-2 isolated from a COVID-19 patient, we first found that infection was lethal in transgenic mice expressing the human angiotensin I-converting enzyme 2 (hACE2). Fortuitously, full genome sequencing of SARS-CoV-2 from the brain and lung of these animals showed genetic differences. Likewise, SARS-CoV-2 isolates from brains and lungs of these also showed differences in plaque morphology. Inoculation of these brain and lung SARS-CoV-2 isolates into new batch of hACE2 mice intra-nasally resulted in lethal CNS and pulmonary infection, respectively. Collectively, our study suggests that genetic variants of SARS-CoV-2 could be used to replicate specific features of COVID-19 for the testing of potential vaccines or therapeutics.


Asunto(s)
COVID-19/patología , Modelos Animales de Enfermedad , Pulmón/patología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Animales , Encéfalo/patología , Encéfalo/virología , COVID-19/metabolismo , COVID-19/mortalidad , COVID-19/virología , Femenino , Humanos , Pulmón/virología , Ratones , Ratones Transgénicos , Peptidil-Dipeptidasa A/metabolismo
12.
EBioMedicine ; 65: 103262, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33691247

RESUMEN

BACKGROUND: The coronavirus disease-19 (COVID-19) pandemic has cost lives and economic hardships globally. Various studies have found a number of different factors, such as hyperinflammation and exhausted/suppressed T cell responses to the etiological SARS coronavirus-2 (SARS-CoV-2), being associated with severe COVID-19. However, sieving the causative from associative factors of respiratory dysfunction has remained rudimentary. METHODS: We postulated that the host responses causative of respiratory dysfunction would track most closely with disease progression and resolution and thus be differentiated from other factors that are statistically associated with but not causative of severe COVID-19. To track the temporal dynamics of the host responses involved, we examined the changes in gene expression in whole blood of 6 severe and 4 non-severe COVID-19 patients across 15 different timepoints spanning the nadir of respiratory function. FINDINGS: We found that neutrophil activation but not type I interferon signaling transcripts tracked most closely with disease progression and resolution. Moreover, transcripts encoding for protein phosphorylation, particularly the serine-threonine kinases, many of which have known T cell proliferation and activation functions, were increased after and may thus contribute to the upswing of respiratory function. Notably, these associative genes were targeted by dexamethasone, but not methylprednisolone, which is consistent with efficacy outcomes in clinical trials. INTERPRETATION: Our findings suggest neutrophil activation as a critical factor of respiratory dysfunction in COVID-19. Drugs that target this pathway could be potentially repurposed for the treatment of severe COVID-19. FUNDING: This study was sponsored in part by a generous gift from The Hour Glass. EEO and JGL are funded by the National Medical Research Council of Singapore, through the Clinician Scientist Awards awarded by the National Research Foundation of Singapore.


Asunto(s)
COVID-19/patología , Activación de Linfocitos/inmunología , Activación Neutrófila/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adulto , Anciano , Progresión de la Enfermedad , Reposicionamiento de Medicamentos , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Estudios Prospectivos , Linfocitos T/inmunología
13.
Med ; 2(6): 682-688.e4, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33851143

RESUMEN

BACKGROUND: RNA vaccines against coronavirus disease 2019 (COVID-19) have demonstrated ∼95% efficacy in phase III clinical trials. Although complete vaccination consisted of 2 doses, the onset of protection for both licensed RNA vaccines was observed as early as 12 days after a single dose. The adaptive immune response that coincides with this onset of protection could represent the necessary elements of immunity against COVID-19. METHODS: Serological and T cell analysis was performed in a cohort of 20 healthcare workers after receiving the first dose of the Pfizer/BioNTech BNT162b2 vaccine. The primary endpoint was the adaptive immune responses detectable at days 7 and 10 after dosing. FINDINGS: Spike-specific T cells and binding antibodies were detectable 10 days after the first dose of the vaccine, in contrast to receptor-blocking and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) neutralizing antibodies, which were mostly undetectable at this early time point. CONCLUSIONS: Our findings suggest that early T cell and binding antibody responses, rather than either receptor-blocking or virus neutralizing activity, induced early protection against COVID-19. FUNDING: The study was funded by a generous donation from The Hour Glass to support COVID-19 research.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Humanos , Inmunoglobulina G , ARN , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T , Vacunas Sintéticas , Vacunas de ARNm
14.
Cell Rep ; 31(6): 107617, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32402284

RESUMEN

The molecular basis of dengue virus (DENV) attenuation remains ambiguous and hampers a targeted approach to derive safe but nonetheless immunogenic live vaccine candidates. Here, we take advantage of DENV serotype 2 PDK53 vaccine strain, which recently and successfully completed a phase-3 clinical trial, to identify how this virus is attenuated compared to its wild-type parent, DENV2 16681. Site-directed mutagenesis on a 16681 infectious clone identifies a single G53D substitution in the non-structural 1 (NS1) protein that reduces 16681 infection and dissemination in both Aedes aegypti, as well as in mammalian cells to produce the characteristic phenotypes of PDK53. Mechanistically, NS1 G53D impairs the function of a known host factor, the endoplasmic reticulum (ER)-resident ribophorin 1 protein, to properly glycosylate NS1 and thus induce a host antiviral gene through ER stress responses. Our findings provide molecular insights on DENV attenuation on a clinically tested strain.


Asunto(s)
Vacunas contra el Dengue/farmacología , Virus del Dengue/genética , Virus del Dengue/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Aedes/virología , Animales , Chlorocebus aethiops , Dengue/virología , Vacunas contra el Dengue/inmunología , Estrés del Retículo Endoplásmico , Femenino , Glicosilación , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Células Vero , Proteínas no Estructurales Virales/metabolismo
15.
mSphere ; 4(5)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533998

RESUMEN

Dengue is caused by infection with any one of four dengue viruses (DENV); the risk of severe disease appears to be enhanced by the cross-reactive or subneutralizing levels of antibody from a prior DENV infection. These antibodies opsonize DENV entry through the activating Fc gamma receptors (FcγR), instead of infection through canonical receptor-mediated endocytosis, to result in higher levels of DENV replication. However, whether the enhanced replication is solely due to more efficient FcγR-mediated DENV entry or is also through FcγR-mediated alteration of the host transcriptome response to favor DENV infection remains unclear. Indeed, more efficient viral entry through activation of the FcγR can result in an increased viral antigenic load within target cells and confound direct comparisons of the host transcriptome response under antibody-dependent and antibody-independent conditions. Herein, we show that, despite controlling for the viral antigenic load in primary monocytes, the antibody-dependent and non-antibody-dependent routes of DENV entry induce transcriptome responses that are remarkably different. Notably, antibody-dependent DENV entry upregulated DENV host dependency factors associated with RNA splicing, mitochondrial respiratory chain complexes, and vesicle trafficking. Additionally, supporting findings from other studies, antibody-dependent DENV entry impeded the downregulation of ribosomal genes caused by canonical receptor-mediated endocytosis to increase viral translation. Collectively, our findings support the notion that antibody-dependent DENV entry alters host responses that support the viral life cycle and that host responses to DENV need to be defined in the context of its entry pathway.IMPORTANCE Dengue virus is the most prevalent mosquito-borne viral infection globally, resulting in variable manifestations ranging from asymptomatic viremia to life-threatening shock and multiorgan failure. Previous studies have indicated that the risk of severe dengue in humans can be increased by a specific range of preexisting anti-dengue virus antibody titers, a phenomenon termed antibody-dependent enhancement. There is hence a need to understand how antibodies augment dengue virus infection compared to the alternative canonical receptor-mediated viral entry route. Herein, we show that, besides facilitating viral uptake, antibody-mediated entry increases the expression of early host dependency factors to promote viral infection; these factors include RNA splicing, mitochondrial respiratory chain complexes, vesicle trafficking, and ribosomal genes. These findings will enhance our understanding of how differences in entry pathways can affect host responses and offer opportunities to design therapeutics that can specifically inhibit antibody-dependent enhancement of dengue virus infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/fisiología , Interacciones Microbiota-Huesped , Receptores de IgG/inmunología , Internalización del Virus , Acrecentamiento Dependiente de Anticuerpo , Antígenos Virales/inmunología , Línea Celular , Células Cultivadas , Dengue/virología , Humanos , Monocitos/inmunología , Monocitos/virología , Análisis de Secuencia de ARN , Transcriptoma , Replicación Viral
16.
Cell Host Microbe ; 26(5): 601-605.e3, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31676304

RESUMEN

Detailed understanding of the roles of humoral and cellular immune responses in sterilizing dengue virus (DENV) infection in humans is required to inform effective vaccine development. We report an unusual case of persistent DENV infection in a lymphopenic renal transplant recipient who was therapeutically immunosuppressed to prevent organ rejection. Following resolution of symptomatic dengue, this patient remained positive for DENV3 RNA in the blood for 4 months and viruric up to 9 months post-infection despite demonstrable levels of serum neutralizing antibodies throughout this period. Full resolution of DENV infection instead coincided with recovery of CD8+ T cell counts during reversal from lymphopenia. Taken collectively, our observations suggest a role for cellular immunity in sterilizing DENV infection in humans. Any dengue vaccine should thus be able to induce both humoral and cellular immunity that respectively prevent symptomatic infection and enable effective viral clearance.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD8-positivos/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Aedes , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Cricetinae , Dengue/complicaciones , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Huésped Inmunocomprometido/inmunología , Trasplante de Riñón , Lupus Eritematoso Sistémico/complicaciones , Recuento de Linfocitos , Linfopenia/complicaciones , Linfopenia/inmunología , ARN Viral/sangre , Adulto Joven
17.
Nat Med ; 25(8): 1218-1224, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31308506

RESUMEN

Flaviviral infections result in a wide spectrum of clinical outcomes, ranging from asymptomatic infection to severe disease. Although the correlates of severe disease have been explored1-4, the pathophysiology that differentiates symptomatic from asymptomatic infection remains undefined. To understand the molecular underpinnings of symptomatic infection, the blood transcriptomic and metabolomic profiles of individuals were examined before and after inoculation with the live yellow fever viral vaccine (YF17D). It was found that individuals with adaptive endoplasmic reticulum (ER) stress and reduced tricarboxylic acid cycle activity at baseline showed increased susceptibility to symptomatic outcome. YF17D infection in these individuals induced maladaptive ER stress, triggering downstream proinflammatory responses that correlated with symptomatic outcome. The findings of the present study thus suggest that the ER stress response and immunometabolism underpin symptomatic yellow fever and possibly even other flaviviral infections. Modulating either ER stress or metabolism could be exploited for prophylaxis against symptomatic flaviviral infection outcome.


Asunto(s)
Estrés del Retículo Endoplásmico , Vacuna contra la Fiebre Amarilla/inmunología , Fiebre Amarilla/metabolismo , Adulto , Ciclo del Ácido Cítrico , Susceptibilidad a Enfermedades , Humanos , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Vacunas Atenuadas/inmunología , Fiebre Amarilla/etiología
18.
Nat Commun ; 9(1): 1031, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531213

RESUMEN

Zika virus (ZIKV) is a flavivirus that can cause congenital disease and requires development of an effective long-term preventative strategy. A replicative ZIKV vaccine with properties similar to the yellow fever 17D (YF17D) live-attenuated vaccine (LAV) would be advantageous, as a single dose of YF17D produces lifelong immunity. However, a replicative ZIKV vaccine must also be safe from causing persistent organ infections. Here we report an approach to ZIKV LAV development. We identify a ZIKV variant that produces small plaques due to interferon (IFN)-restricted viral propagation and displays attenuated infection of endothelial cells. We show that these properties collectively reduce the risk of organ infections and vertical transmission in a mouse model but remain sufficiently immunogenic to prevent wild-type ZIKV infection. Our findings suggest a strategy for the development of a safe but efficacious ZIKV LAV.


Asunto(s)
Técnicas Inmunológicas , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/genética , Virus Zika/inmunología , Aedes/inmunología , Aedes/virología , Animales , Células Dendríticas/inmunología , Células Dendríticas/virología , Humanos , Ratones , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virus Zika/crecimiento & desarrollo , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
19.
Sci Rep ; 7: 40923, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28084461

RESUMEN

Secondary infection with a heterologous dengue virus (DENV) serotype increases the risk of severe dengue, through a process termed antibody-dependent enhancement (ADE). During ADE, DENV is opsonized with non- or sub-neutralizing antibody levels that augment entry into monocytes and dendritic cells through Fc-gamma receptors (FcγRs). We previously reported that co-ligation of leukocyte immunoglobulin-like receptor-B1 (LILRB1) by antibody-opsonized DENV led to recruitment of SH2 domain-containing phosphatase-1 (SHP-1) to dephosphorylate spleen tyrosine kinase (Syk) and reduce interferon stimulated gene induction. Here, we show that LILRB1 also signals through SHP-1 to attenuate the otherwise rapid acidification for lysosomal enzyme activation following FcγR-mediated uptake of DENV. Reduced or slower trafficking of antibody-opsonized DENV to lytic phagolysosomal compartments, demonstrates how co-ligation of LILRB1 also permits DENV to overcome a cell-autonomous immune response, enhancing intracellular survival of DENV. Our findings provide insights on how antiviral drugs that modify phagosome acidification should be used for viruses such as DENV.


Asunto(s)
Acrecentamiento Dependiente de Anticuerpo , Virus del Dengue/inmunología , Dengue/inmunología , Fagosomas/inmunología , Antígenos CD/metabolismo , Línea Celular Tumoral , Virus del Dengue/fisiología , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Internalización del Virus
20.
Nat Microbiol ; 1: 16164, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642668

RESUMEN

Vaccination has achieved remarkable successes in the control of childhood viral diseases. To control emerging infections, however, vaccines will need to be delivered to older individuals who, unlike infants, probably have had prior infection or vaccination with related viruses and thus have cross-reactive antibodies against the vaccines. Whether and how these cross-reactive antibodies impact live attenuated vaccination efficacy is unclear. Using an open-label randomized trial design, we show that subjects with a specific range of cross-reactive antibody titres from a prior inactivated Japanese encephalitis vaccination enhanced yellow fever (YF) immunogenicity upon YF vaccination. Enhancing titres of cross-reactive antibodies prolonged YF vaccine viraemia, provoked greater pro-inflammatory responses, and induced adhesion molecules intrinsic to the activating Fc-receptor signalling pathway, namely immune semaphorins, facilitating immune cell interactions and trafficking. Our findings clinically demonstrate antibody-enhanced infection and suggest that vaccine efficacy could be improved by exploiting cross-reactive antibodies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA