Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(16): 2952-2960.e10, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35809570

RESUMEN

The currently circulating Omicron sub-variants are the SARS-CoV-2 strains with the highest number of known mutations. Herein, we found that human angiotensin-converting enzyme 2 (hACE2) binding affinity to the receptor-binding domains (RBDs) of the four early Omicron sub-variants (BA.1, BA.1.1, BA.2, and BA.3) follows the order BA.1.1 > BA.2 > BA.3 ≈ BA.1. The complex structures of hACE2 with RBDs of BA.1.1, BA.2, and BA.3 reveal that the higher hACE2 binding affinity of BA.2 than BA.1 is related to the absence of the G496S mutation in BA.2. The R346K mutation in BA.1.1 majorly affects the interaction network in the BA.1.1 RBD/hACE2 interface through long-range alterations and contributes to the higher hACE2 affinity of the BA.1.1 RBD than the BA.1 RBD. These results reveal the structural basis for the distinct hACE2 binding patterns among BA.1.1, BA.2, and BA.3 RBDs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , COVID-19 , Enzima Convertidora de Angiotensina 2/metabolismo , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genética
2.
Cell ; 184(13): 3438-3451.e10, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34139177

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide, causing a global pandemic. Bat-origin RaTG13 is currently the most phylogenetically related virus. Here we obtained the complex structure of the RaTG13 receptor binding domain (RBD) with human ACE2 (hACE2) and evaluated binding of RaTG13 RBD to 24 additional ACE2 orthologs. By substituting residues in the RaTG13 RBD with their counterparts in the SARS-CoV-2 RBD, we found that residue 501, the major position found in variants of concern (VOCs) 501Y.V1/V2/V3, plays a key role in determining the potential host range of RaTG13. We also found that SARS-CoV-2 could induce strong cross-reactive antibodies to RaTG13 and identified a SARS-CoV-2 monoclonal antibody (mAb), CB6, that could cross-neutralize RaTG13 pseudovirus. These results elucidate the receptor binding and host adaption mechanisms of RaTG13 and emphasize the importance of continuous surveillance of coronaviruses (CoVs) carried by animal reservoirs to prevent another spillover of CoVs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión/fisiología , COVID-19/metabolismo , Quirópteros/virología , SARS-CoV-2/patogenicidad , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , COVID-19/inmunología , Quirópteros/inmunología , Quirópteros/metabolismo , Especificidad del Huésped/inmunología , Humanos , Filogenia , Unión Proteica/fisiología , Receptores Virales/metabolismo , SARS-CoV-2/inmunología , Alineación de Secuencia
3.
Cell ; 181(4): 894-904.e9, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32275855

RESUMEN

The recent emergence of a novel coronavirus (SARS-CoV-2) in China has caused significant public health concerns. Recently, ACE2 was reported as an entry receptor for SARS-CoV-2. In this study, we present the crystal structure of the C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in complex with human ACE2 (hACE2), which reveals a hACE2-binding mode similar overall to that observed for SARS-CoV. However, atomic details at the binding interface demonstrate that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-RBD. Additionally, a panel of murine monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) against SARS-CoV-S1/receptor-binding domain (RBD) were unable to interact with the SARS-CoV-2 S protein, indicating notable differences in antigenicity between SARS-CoV and SARS-CoV-2. These findings shed light on the viral pathogenesis and provide important structural information regarding development of therapeutic countermeasures against the emerging virus.


Asunto(s)
Betacoronavirus/química , Peptidil-Dipeptidasa A/química , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/fisiología , Epítopos , Humanos , Modelos Moleculares , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Dominios Proteicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Cell ; 177(7): 1714-1724.e12, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31080063

RESUMEN

Arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), cause severe and debilitating rheumatic diseases worldwide, resulting in severe morbidity and economic costs. Recently, MXRA8 was reported as an entry receptor. Here, we present the crystal structures of the mouse MXRA8, human MXRA8 in complex with the CHIKV E protein, and the cryo-electron microscopy structure of human MXRA8 and CHIKV virus-like particle. MXRA8 has two Ig-like domains with unique structural topologies. This receptor binds in the "canyon" between two protomers of the E spike on the surface of the virion. The atomic details at the interface between the two binding entities reveal that both the two domains and the hinge region of MXRA8 are involved in interaction with CHIKV E1-E2 residues from two protomers. Notably, the stalk region of MXRA8 is critical for CHIKV virus entry. This finding provides important information regarding the development of therapeutic countermeasures against those arthritogenic alphaviruses.


Asunto(s)
Virus Chikungunya/química , Proteínas de la Membrana/química , Proteínas del Envoltorio Viral/química , Internalización del Virus , Animales , Virus Chikungunya/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Células Vero , Proteínas del Envoltorio Viral/metabolismo
5.
EMBO Rep ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026012

RESUMEN

Genome transcription and replication of influenza A virus (FluA), catalyzed by viral RNA polymerase (FluAPol), are delicately controlled across the virus life cycle. A switch from transcription to replication occurring at later stage of an infection is critical for progeny virion production and viral non-structural protein NS2 has been implicated in regulating the switch. However, the underlying regulatory mechanisms and the structure of NS2 remained elusive for years. Here, we determine the cryo-EM structure of the FluAPol-NS2 complex at ~3.0 Å resolution. Surprisingly, three domain-swapped NS2 dimers arrange three symmetrical FluPol dimers into a highly ordered barrel-like hexamer. Further structural and functional analyses demonstrate that NS2 binding not only hampers the interaction between FluAPol and the Pol II CTD because of steric conflicts, but also impairs FluAPol transcriptase activity by stalling it in the replicase conformation. Moreover, this is the first visualization of the full-length NS2 structure. Our findings uncover key molecular mechanisms of the FluA transcription-replication switch and have implications for the development of antivirals.

6.
EMBO J ; 40(16): e107786, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34018203

RESUMEN

Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS-CoV-2 causing the global COVID-19 outbreak. Here, we study the binding of two SARS-CoV-2-like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin-converting enzyme 2 (hACE2), the receptor of SARS-CoV-2. We find that the spike protein receptor-binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS-CoV-2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2-expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS-CoV-2. Additionally, cryo-EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS-CoV-2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS-CoV-2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Betacoronavirus/fisiología , Pangolines/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Animales , Sitios de Unión , Células HEK293 , Erizos/virología , Especificidad del Huésped , Humanos , Ratones , Modelos Moleculares , Filogenia , Unión Proteica , Conformación Proteica , Ratas , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
7.
PLoS Pathog ; 19(9): e1011659, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721934

RESUMEN

SARS-CoV-2 variants with severe immune evasion are a major challenge for COVID-19 prevention, especially the circulating Omicron XBB/BQ.1.1/BF.7 strains. Thus, the next-generation of broad-spectrum vaccines are urgently needed. Previously, we developed a COVID-19 protein subunit vaccine, ZF2001, based on the RBD-homodimer as the immunogen. To adapt SARS-CoV-2 variants, we developed chimeric RBD-heterodimers to induce broad immune responses. In this study, we further explored the concept of tandem RBD homotrimer and heterotrimer. Prototype SARS-CoV-2 RBD-homotrimer, prototype-Delta-BA.1 (PDO) RBD-heterotrimer and Delta-BA.2-BA.5 (DBA2BA5) RBD-heterotrimer were designed. Biochemical and cryo-EM structural characterization demonstrated total epitope exposure of the RBD-trimers. In mouse experiments, PDO and DBA2BA5 elicited broad SARS-CoV-2 neutralization. Potent protection against SARS-CoV-2 variants was observed in challenge assays and was correlated with neutralizing antibody titer. This study validated the design strategy of tandem RBD-heterotrimers as multivalent immunogens and presented a promising vaccine candidate, DBA2BA5, eliciting broad-spectrum immune responses, including against the circulating XBB/BF.7/BQ.1.1.


Asunto(s)
COVID-19 , Vacunas , Animales , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales
8.
Nano Lett ; 24(7): 2345-2351, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334460

RESUMEN

Nonvolatile multistate manipulation of two-dimensional (2D) magnetic materials holds promise for low dissipation, highly integrated, and versatile spintronic devices. Here, utilizing density functional theory calculations and Monte Carlo simulations, we report the realization of nonvolatile and multistate control of topological magnetism in monolayer CrI3 by constructing multiferroic heterojunctions with quadruple-well ferroelectric (FE) materials. The Pt2Sn2Te6/CrI3 heterojunction exhibits multiple magnetic phases upon modulating FE polarization states of FE layers and interlayer sliding. These magnetic phases include Bloch-type skyrmions and ferromagnetism, as well as a newly discovered topological magnetic structure. We reveal that the Dzyaloshinskii-Moriya interaction (DMI) induced by interfacial coupling plays a crucial role in magnetic skyrmion manipulation, which aligns with the Fert-Levy mechanism. Moreover, a regular magnetic skyrmion lattice survives when removing a magnetic field, demonstrating its robustness. The work sheds light on an effective approach to nonvolatile and multistate control of 2D magnetic materials.

9.
J Infect Dis ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996045

RESUMEN

BACKGROUND: Thrombocytopenia is the major clinical feature associated with the severity of SFTS, but the mechanism by which it occurs remains unclear. METHODS: RNA transcriptome analyses were performed on platelets purified from SFTS patients and SFTSV-infected mice. The functions of differentially expressed genes (DEGs) in the platelets were characterized. ELISA, flow cytometry, and qRT-PCR were used to measure the levels of platelet activation, SFTSV infection in platelets, formation of neutrophil extracellular traps (NETs), transcription of DEGs and percent of platelets undergoing cell death. RESULTS: Enhanced neutrophil activation and interferon (IFN) signaling involved in the viral life cycle were common platelet responses in SFTS, which may consume increasing numbers of platelets. Other functional changes may be associated with different outcomes of SFTS. SFTSV infection led to platelet destruction by pyroptosis, apoptosis, necroptosis, and autophagy. In contrast to SFTS patients, platelets in SFTSV-infected mice mainly play a role in adaptive immunity, and platelet death was not as severe as in humans. CONCLUSIONS: The altered functions of platelets, such as mediating leukocyte activation and undergoing cell death, contribute to thrombocytopenia in SFTS patients. The different mechanisms of thrombocytopenia in mice, suggest that platelet functions should be considered in experimental animal models.

10.
J Am Chem Soc ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020477

RESUMEN

Realizating of a low work function (WF) and room-temperature stability in electrides is highly desired for various applications, such as electron emitters, catalysts, and ion batteries. Herein, a criterion based on the electron localization function (ELF) and projected density of states (PDOS) in the vacancy of the oxide electride [Ca24Al28O64]4+(4e-) (C12A7) was adopted to screen out 13 electrides in single-metal oxides. By creating oxygen vacancies in nonelectride oxides, we find out 9 of them showed vacancy-induced anionic electrons. Considering the thermodynamic stability, two electrides with ordered vacancies, Nb3O3 and Ce4O3, stand out and show vacancy-induced zero-dimensional anionic electrons. Both exhibit low WFs, namely 3.1 and 2.3 eV for Nb3O3 and Ce4O3, respectively. In the case of Nb3O3, the ELF at oxygen vacancies decreases first and then increases during the decrease in the total number of electrons in self-consistent calculations due to Nb's multivalent state. Meanwhile, Ce4O3 displays promise for ammonia synthesis due to its low hydrogen diffusion barrier and low activation energy. Further calculations revealed that CeO with disordered vacancies at low concentrations also exhibits electride-like properties, suggesting its potential as a substitute for Ce4O3.

11.
BMC Microbiol ; 24(1): 156, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724913

RESUMEN

BACKGROUND: To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS: Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS: Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.


Asunto(s)
Antibacterianos , Infecciones por Campylobacter , Campylobacter jejuni , Cefoperazona , Heces , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , ARN Ribosómico 16S , Sulbactam , Animales , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/crecimiento & desarrollo , Femenino , Antibacterianos/farmacología , Cefoperazona/farmacología , Heces/microbiología , Infecciones por Campylobacter/microbiología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Sulbactam/farmacología , ARN Ribosómico 16S/genética , Intestinos/microbiología , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de los fármacos , ADN Bacteriano/genética , ADN Ribosómico/genética
12.
Opt Express ; 32(4): 5481-5491, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439273

RESUMEN

Quasi-parametric amplification (QPA), a variant of optical parametric amplification, can release the phase-matching requirement owing to the introduction of idler dissipation, and thus may support ultrabroad bandwidth. Here we establish the gain-dispersion equation for QPA, which reveals the interplay of signal gain, idler dissipation and phase mismatch. The idler dissipation dramatically enhances the gain bandwidth, which breaks the limit set by phase matching. We theoretically demonstrate that QPA with strong dissipation allows high-efficiency few-cycle pulse amplification in those nonlinear crystals without a magic phase-matching solution.

13.
J Immunol ; 208(12): 2675-2685, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35606050

RESUMEN

The adaptive immune receptor repertoire consists of the entire set of an individual's BCRs and TCRs and is believed to contain a record of prior immune responses and the potential for future immunity. Analyses of TCR repertoires via deep learning (DL) methods have successfully diagnosed cancers and infectious diseases, including coronavirus disease 2019. However, few studies have used DL to analyze BCR repertoires. In this study, we collected IgG H chain Ab repertoires from 276 healthy control subjects and 326 patients with various infections. We then extracted a comprehensive feature set consisting of 10 subsets of repertoire-level features and 160 sequence-level features and tested whether these features can distinguish between infected individuals and healthy control subjects. Finally, we developed an ensemble DL model, namely, DL method for infection diagnosis (https://github.com/chenyuan0510/DeepID), and used this model to differentiate between the infected and healthy individuals. Four subsets of repertoire-level features and four sequence-level features were selected because of their excellent predictive performance. The DL method for infection diagnosis outperformed traditional machine learning methods in distinguishing between healthy and infected samples (area under the curve = 0.9883) and achieved a multiclassification accuracy of 0.9104. We also observed differences between the healthy and infected groups in V genes usage, clonal expansion, the complexity of reads within clone, the physical properties in the α region, and the local flexibility of the CDR3 amino acid sequence. Our results suggest that the Ab repertoire is a promising biomarker for the diagnosis of various infections.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Secuencia de Aminoácidos , COVID-19/diagnóstico , Humanos , Receptores de Antígenos de Linfocitos T
14.
Cereb Cortex ; 33(24): 11582-11593, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37851712

RESUMEN

Autism spectrum disorder is a neurodevelopmental disorder whose core deficit is social dysfunction. Previous studies have indicated that structural changes in white matter are associated with autism spectrum disorder. However, few studies have explored the alteration of the large-scale white-matter functional networks in autism spectrum disorder. Here, we identified ten white-matter functional networks on resting-state functional magnetic resonance imaging data using the K-means clustering algorithm. Compared with the white matter and white-matter functional network connectivity of the healthy controls group, we found significantly decreased white matter and white-matter functional network connectivity mainly located within the Occipital network, Middle temporo-frontal network, and Deep network in autism spectrum disorder. Compared with healthy controls, findings from white-matter gray-matter functional network connectivity showed the decreased white-matter gray-matter functional network connectivity mainly distributing in the Occipital network and Deep network. Moreover, we compared the spontaneous activity of white-matter functional networks between the two groups. We found that the spontaneous activity of Middle temporo-frontal and Deep network was significantly decreased in autism spectrum disorder. Finally, the correlation analysis showed that the white matter and white-matter functional network connectivity between the Middle temporo-frontal network and others networks and the spontaneous activity of the Deep network were significantly correlated with the Social Responsiveness Scale scores of autism spectrum disorder. Together, our findings indicate that changes in the white-matter functional networks are associated behavioral deficits in autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Sustancia Gris/patología , Análisis por Conglomerados , Encéfalo
15.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33335073

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a major threat to global health. Although varied SARS-CoV-2-related coronaviruses have been isolated from bats and SARS-CoV-2 may infect bat, the structural basis for SARS-CoV-2 to utilize the human receptor counterpart bat angiotensin-converting enzyme 2 (bACE2) for virus infection remains less understood. Here, we report that the SARS-CoV-2 spike protein receptor binding domain (RBD) could bind to bACE2 from Rhinolophus macrotis (bACE2-Rm) with substantially lower affinity compared with that to the human ACE2 (hACE2), and its infectivity to host cells expressing bACE2-Rm was confirmed with pseudotyped SARS-CoV-2 virus and SARS-CoV-2 wild virus. The structure of the SARS-CoV-2 RBD with the bACE2-Rm complex was determined, revealing a binding mode similar to that of hACE2. The analysis of binding details between SARS-CoV-2 RBD and bACE2-Rm revealed that the interacting network involving Y41 and E42 of bACE2-Rm showed substantial differences with that to hACE2. Bats have extensive species diversity and the residues for RBD binding in bACE2 receptor varied substantially among different bat species. Notably, the Y41H mutant, which exists in many bats, attenuates the binding capacity of bACE2-Rm, indicating the central roles of Y41 in the interaction network. These findings would benefit our understanding of the potential infection of SARS-CoV-2 in varied species of bats.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Quirópteros , SARS-CoV-2 , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/epidemiología , Quirópteros/genética , Quirópteros/metabolismo , Quirópteros/virología , Células HEK293 , Humanos , Mutación Missense , Pandemias , Unión Proteica , Dominios Proteicos , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Especificidad de la Especie
16.
Nano Lett ; 23(10): 4634-4641, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37146245

RESUMEN

Databases for charge-neutral two-dimensional (2D) building blocks (BBs), i.e., 2D materials, have been built for years due to their applications in nanoelectronics. Though lots of solids are constructed from charged 2DBBs, a database for them is still missing. Here, we identify 1028 charged 2DBBs from Materials Project database using a topological-scaling algorithm. These BBs host versatile functionalities including superconductivity, magnetism, and topological properties. We construct layered materials by assembling these BBs considering valence state and lattice mismatch and predict 353 stable layered materials by high-throughput density functional theory calculations. These materials can not only inherit their functionalities but also show enhanced/emergent properties compared with their parent materials: CaAlSiF displays superconducting transition temperature higher than NaAlSi; Na2CuIO6 shows bipolar ferromagnetic semiconductivity and anomalous valley Hall effect that are absent in KCuIO6; LaRhGeO possesses nontrivial band topology. This database expands the design space of functional materials for fundamental research and potential applications.

17.
Mol Cancer ; 22(1): 174, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884951

RESUMEN

BACKGROUND: Vascular invasion is a major route for intrahepatic and distant metastasis in hepatocellular carcinoma (HCC) and is a strong negative prognostic factor. Circular RNAs (circRNAs) play important roles in tumorigenesis and metastasis. However, the regulatory functions and underlying mechanisms of circRNAs in the development of vascular invasion in HCC are largely unknown. METHODS: High throughput sequencing was used to screen dysregulated circRNAs in portal vein tumor thrombosis (PVTT) tissues. The biological functions of candidate circRNAs in the migration, vascular invasion, and metastasis of HCC cells were examined in vitro and in vivo. To explore the underlying mechanisms, RNA sequencing, MS2-tagged RNA affinity purification, mass spectrometry, and RNA immunoprecipitation assays were performed. RESULTS: circRNA sequencing followed by quantitative real-time PCR (qRT-PCR) revealed that circRNA pleckstrin and Sect. 7 domain containing 3 (circPSD3) was significantly downregulated in PVTT tissues. Decreased circPSD3 expression in HCC tissues was associated with unfavourable characteristics and predicted poor prognosis in HCC. TAR DNA-binding protein 43 (TDP43) inhibited the biogenesis of circPSD3 by interacting with the downstream intron of pre-PSD3. circPSD3 inhibited the intrahepatic vascular invasion and metastasis of HCC cells in vitro and in vivo. Serpin family B member 2 (SERPINB2), an endogenous bona fide inhibitor of the urokinase-type plasminogen activator (uPA) system, is the downstream target of circPSD3. Mechanistically, circPSD3 interacts with histone deacetylase 1 (HDAC1) to sequester it in the cytoplasm, attenuating the inhibitory effect of HDAC1 on the transcription of SERPINB2. In vitro and in vivo studies demonstrated that circPSD3 is a promising inhibitor of the uPA system. CONCLUSIONS: circPSD3 is an essential regulator of vascular invasion and metastasis in HCC and may serve as a prognostic biomarker and therapeutic target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , ARN Circular/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , ARN/genética , Inhibidor 2 de Activador Plasminogénico/genética , Regulación Neoplásica de la Expresión Génica
18.
Biochem Biophys Res Commun ; 682: 250-258, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37826948

RESUMEN

Cathepsin D (CTSD) is an aspartic endopeptidase, however, we found that it was also capable of enzymatic digestion of nucleic acids (NAs). The purpose of this study was to investigate the basic properties of CTSD enzymatic activity on NAs, and explore the degradation mechanism. The results showed that NAs were efficiently digested between pH 3.0 and 5.0, and the optimum pH was 3.5. CTSD exhibited optimum activity at the temperature of 50°C. The degradation rate was improved with an increased CTSD concentration, and NAs were digested to an enzyme concentration of 0.001%, at which point, NAs were no longer digested. Ca2+ and Mg2+ at low concentrations of 5 mM promoted the digestion remarkably. As the protein substrate for CTSD, both Hb and BSA had no effect on DNA degradation, even when the molar ratio of protein:DNA was 104:1. Kinetic parameters of Km and kcat/Km value were (42 ± 1) µM and (1.62 ± 0.1) × 10-2 s-1mM-1 respectively, using real-time quantitative PCR (RT-PCR). Specially, pepstatin A which is the specific aspartic protease inhibitor exhibited inhibitory effect on NA digestion by CTSD as well, suggesting that the catalytic active site of CTSD for NAs might be the same as protein. A brief degradation mechanism is discussed. The present study may change the cognition of CTSD specificity for substrate and contribute greatly to enzymology of CTSD.


Asunto(s)
Catepsina D , Ácidos Nucleicos , Ácido Aspártico Endopeptidasas , Catepsina D/metabolismo , ADN/metabolismo , Humanos , Animales , Bovinos
19.
Small ; 19(11): e2207142, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651009

RESUMEN

On accounts of the advantages of inherent high stability, ease of preparation and superior catalytic activities, nanozymes have attracted tremendous potential in diverse biomedical applications as alternatives to natural enzymes. Optimizing the activity of nanozymes is significant for widening and boosting the applications into practical level. As the research of the catalytic activity regulation strategies of nanozymes is boosting, it is essential to timely review, summarize, and analyze the advances in structure-activity relationships for further inspiring ingenious research into this prosperous area. Herein, the activity regulation methods of nanozymes in the recent 5 years are systematically summarized, including size and morphology, doping, vacancy, surface modification, and hybridization, followed by a discussion of the latest biomedical applications consisting of biosensing, antibacterial, and tumor therapy. Finally, the challenges and opportunities in this rapidly developing field is presented for inspiring more and more research into this infant yet promising area.


Asunto(s)
Nanoestructuras , Humanos , Catálisis , Hibridación de Ácido Nucleico , Relación Estructura-Actividad
20.
J Virol ; 96(17): e0081422, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000849

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted between humans and minks, and some mutations in the spike (S) protein, especially in the receptor-binding domain (RBD), have been identified in mink-derived viruses. Here, we examined binding of the mink angiotensin-converting enzyme 2 (ACE2) receptor to mink-derived and important human-originating variants, and we demonstrated that most of the RBD variants increased the binding affinities to mink ACE2 (mkACE2). Cryo-electron microscopy structures of the mkACE2-RBD Y453F (with a Y-to-F change at position 453) and mkACE2-RBD F486L complexes helped identify the key residues that facilitate changes in mkACE2 binding affinity. Additionally, the data indicated that the Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and human vaccinated sera efficiently prevented infection of human cells by pseudoviruses expressing Y453F, F486L, or N501T RBD. Our findings provide an important molecular mechanism for the rapid adaptation of SARS-CoV-2 in minks and highlight the potential influence of the main mink-originating variants for humans. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a broad range of hosts. Mink-derived SARS-CoV-2 can transmit back to humans. There is an urgent need to understand the binding mechanism of mink-derived SARS-CoV-2 variants to mink receptor. In this study, we identified all mutations in the receptor-binding domain (RBD) of spike (S) protein from mink-derived SARS-CoV-2, and we demonstrated the enhanced binding affinity of mink angiotensin-converting enzyme 2 (ACE2) to most of the mink-derived RBD variants as well as important human-originating RBD variants. Cryo-electron microscopy structures revealed that the Y453F and F486L mutations enhanced the binding forces in the interaction interface. In addition, Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and the SARS-CoV-2 pseudoviruses with Y453F, F486L, or N501T mutations were neutralized by human vaccinated sera. Therefore, our results provide valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19/veterinaria , Visón , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Monoclonales/metabolismo , COVID-19/virología , Microscopía por Crioelectrón , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA