Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.894
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 626(7998): 313-318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326591

RESUMEN

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

2.
Nature ; 597(7874): 57-63, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471277

RESUMEN

Fibre lithium-ion batteries are attractive as flexible power solutions because they can be woven into textiles, offering a convenient way to power future wearable electronics1-4. However, they are difficult to produce in lengths of more than a few centimetres, and longer fibres were thought to have higher internal resistances3,5 that compromised electrochemical performance6,7. Here we show that the internal resistance of such fibres has a hyperbolic cotangent function relationship with fibre length, where it first decreases before levelling off as length increases. Systematic studies confirm that this unexpected result is true for different fibre batteries. We are able to produce metres of high-performing fibre lithium-ion batteries through an optimized scalable industrial process. Our mass-produced fibre batteries have an energy density of 85.69 watt hour per kilogram (typical values8 are less than 1 watt hour per kilogram), based on the total weight of a lithium cobalt oxide/graphite full battery, including packaging. Its capacity retention reaches 90.5% after 500 charge-discharge cycles and 93% at 1C rate (compared with 0.1C rate capacity), which is comparable to commercial batteries such as pouch cells. Over 80 per cent capacity can be maintained after bending the fibre for 100,000 cycles. We show that fibre lithium-ion batteries woven into safe and washable textiles by industrial rapier loom can wirelessly charge a cell phone or power a health management jacket integrated with fibre sensors and a textile display.


Asunto(s)
Cobalto/química , Suministros de Energía Eléctrica , Electrónica , Litio/química , Óxidos/química , Textiles , Dispositivos Electrónicos Vestibles , Grafito/química , Humanos , Iones , Masculino , Tecnología Inalámbrica
3.
Nature ; 579(7798): 279-283, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132708

RESUMEN

Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes1-3, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation-all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment-reversing hepatic steatosis and glucose intolerance-were abrogated in Insp3r1 (also known as Itpr1)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.


Asunto(s)
Glucagón/farmacología , Gluconeogénesis/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Hígado/efectos de los fármacos , Acetilcoenzima A/metabolismo , Tejido Adiposo/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Activación Enzimática/efectos de los fármacos , Glucagón/sangre , Receptores de Inositol 1,4,5-Trifosfato/genética , Lipasa/metabolismo , Lipólisis/efectos de los fármacos , Lipólisis/genética , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Oxidación-Reducción/efectos de los fármacos
4.
Nature ; 588(7838): 491-497, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33149299

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) has previously been identified as an endosomal protein that blocks viral infection1-3. Here we studied clinical cohorts of patients with B cell leukaemia and lymphoma, and identified IFITM3 as a strong predictor of poor outcome. In normal resting B cells, IFITM3 was minimally expressed and mainly localized in endosomes. However, engagement of the B cell receptor (BCR) induced both expression of IFITM3 and phosphorylation of this protein at Tyr20, which resulted in the accumulation of IFITM3 at the cell surface. In B cell leukaemia, oncogenic kinases phosphorylate IFITM3 at Tyr20, which causes constitutive localization of this protein at the plasma membrane. In a mouse model, Ifitm3-/- naive B cells developed in normal numbers; however, the formation of germinal centres and the production of antigen-specific antibodies were compromised. Oncogenes that induce the development of leukaemia and lymphoma did not transform Ifitm3-/- B cells. Conversely, the phosphomimetic IFITM3(Y20E) mutant induced oncogenic PI3K signalling and initiated the transformation of premalignant B cells. Mechanistic experiments revealed that IFITM3 functions as a PIP3 scaffold and central amplifier of PI3K signalling. The amplification of PI3K signals depends on IFITM3 using two lysine residues (Lys83 and Lys104) in its conserved intracellular loop as a scaffold for the accumulation of PIP3. In Ifitm3-/- B cells, lipid rafts were depleted of PIP3, which resulted in the defective expression of over 60 lipid-raft-associated surface receptors, and impaired BCR signalling and cellular adhesion. We conclude that the phosphorylation of IFITM3 that occurs after B cells encounter antigen induces a dynamic switch from antiviral effector functions in endosomes to a PI3K amplification loop at the cell surface. IFITM3-dependent amplification of PI3K signalling, which in part acts downstream of the BCR, is critical for the rapid expansion of B cells with high affinity to antigen. In addition, multiple oncogenes depend on IFITM3 to assemble PIP3-dependent signalling complexes and amplify PI3K signalling for malignant transformation.


Asunto(s)
Linfocitos B/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Antígenos CD19/metabolismo , Linfocitos B/enzimología , Linfocitos B/inmunología , Linfocitos B/patología , Transformación Celular Neoplásica , Femenino , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/patología , Humanos , Integrinas/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Modelos Moleculares , Fosforilación , Receptores de Antígenos de Linfocitos B/metabolismo
5.
Nucleic Acids Res ; 52(5): 2711-2723, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38281192

RESUMEN

Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.


Asunto(s)
ADN , Histona Desacetilasas , Factores de Transcripción MEF2 , Proteínas Represoras , ADN/química , ADN/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/metabolismo , Factores Reguladores Miogénicos/química , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Humanos , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(33): e2305704120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549277

RESUMEN

Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.


Asunto(s)
Hidrogeles , Seda , Animales , Conejos , Seda/química , Hidrogeles/química , Punto Isoeléctrico , Materiales Biocompatibles/química
7.
Circulation ; 149(19): 1516-1533, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38235590

RESUMEN

BACKGROUND: Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel-mediated neurogenic inflammatory cascade underlies ventricular remodeling-related mechanotransduction. METHODS: By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)-specific Piezo1 knockdown rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody-mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS: Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron-specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron-specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS: Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.


Asunto(s)
Inflamación , Canales Iónicos , Infarto del Miocardio , Remodelación Ventricular , Animales , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Mecanotransducción Celular , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
8.
J Cell Sci ; 136(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37622462

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and poorly treated subtype of breast cancer. Identifying novel drivers and mechanisms for tumor progression is essential for precise targeted therapy of TNBC. Immunoglobulin-like transcript 4 (ILT4; also known as LILRB2) is a classic myeloid suppressor for their activation and immune response. Our recent results found that ILT4 is also highly expressed in lung cancer cells, where it has a role in promoting immune evasion and thus tumor formation. However, the expression and function of ILT4 in breast cancer remains elusive. Here, using our patient cohort and public database analysis, we found that TNBC displayed the most abundant ILT4 expression among all breast cancer subtypes. Functionally, enriched ILT4 promoted TNBC cell proliferation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Further mechanistic analysis revealed that ILT4 reprogrammed aerobic glycolysis of tumor cells via AKT-mTOR signaling-mediated glucose transporter 3 (GLUT3; also known as SLC2A3) and pyruvate kinase muscle 2 (PKM2, an isoform encoded by PKM) overexpression. ILT4 inhibition in TNBC reduced tumor progression and GLUT3 and PKM2 expression in vivo. Our study identified a novel driver for TNBC progression and proposed a promising strategy to combat TNBC by targeting ILT4.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Transportador de Glucosa de Tipo 3 , Proliferación Celular/genética , Glucosa
9.
Plant Physiol ; 195(4): 3024-3038, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38696652

RESUMEN

Pear ring rot, caused by Botryosphaeria dothidea, is the most serious disease of pear (Pyrus spp.) trees. However, the molecular mechanisms underlying pear resistance to B. dothidea remain elusive. In this study, we demonstrated that the pear AuTophagy-related Gene 1a (PbrATG1a) plays a key role in autophagic activity and resistance to B. dothidea. Stable overexpression of PbrATG1a enhanced resistance to B. dothidea in pear calli. Autophagy activity was greater in PbrATG1a-overexpressing calli than in wild-type calli. We used yeast 1-hybrid screening to identify a transcription factor, related to ABI3 and VP1 (Pbr3RAV2), that binds the promoter of PbrATG1a and enhances pear resistance to B. dothidea by regulating autophagic activity. Specifically, the overexpression of Pbr3RAV2 enhanced resistance to B. dothidea in pear calli, while transient silencing of Pbr3RAV2 resulted in compromised resistance to B. dothidea in Pyrus betulifolia. In addition, we identified Transparent Testa Glabra 1 (PbrTTG1), which interacts with Pbr3RAV2. Pathogen infection enhanced the interaction between Pbr3RAV2 and PbrTTG1. The Pbr3RAV2-PbrTTG1 complex increased the binding capacity of Pbr3RAV2 and transcription of PbrATG1a. In addition to providing insights into the molecular mechanisms underlying pear disease resistance, these findings suggest potential genetic targets for enhancing disease resistance in pear.


Asunto(s)
Ascomicetos , Autofagia , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Pyrus , Factores de Transcripción , Pyrus/microbiología , Pyrus/genética , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Autofagia/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente
10.
FASEB J ; 38(1): e9664, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038805

RESUMEN

The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.


Asunto(s)
Lesión Pulmonar Aguda , Estimulación del Nervio Vago , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Lipopolisacáridos/toxicidad , Netrina-1/metabolismo , Lesión Pulmonar Aguda/inducido químicamente
11.
FASEB J ; 38(17): e70011, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39250278

RESUMEN

In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-ß expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-ß signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular , Células Madre Mesenquimatosas , Mitofagia , Osteogénesis , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Animales , Mitofagia/fisiología , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Células Cultivadas , Masculino
12.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38904082

RESUMEN

In real-life scenarios, joint consumption is common, particularly influenced by social relationships such as romantic ones. However, how romantic relationships affect consumption decisions and determine dominance remains unclear. This study employs electroencephalography hyperscanning to examine the neural dynamics of couples during joint-consumption decisions. Results show that couples, compared to friends and strangers, prefer healthier foods, while friends have significantly faster reaction times when selecting food. Time-frequency analysis indicates that couples exhibit significantly higher theta power, reflecting deeper emotional and cognitive involvement. Strangers show greater beta1 power, indicating increased cognitive effort and alertness due to unfamiliarity. Friends demonstrate higher alpha2 power when choosing unhealthy foods, suggesting increased cognitive inhibition. Inter-brain phase synchrony analysis reveals that couples display significantly higher inter-brain phase synchrony in the beta1 and theta bands across the frontal-central, parietal, and occipital regions, indicating more coordinated cognitive processing and stronger emotional bonds. Females in couples may be more influenced by emotions during consumption decisions, with detailed sensory information processing, while males exhibit higher cognitive control and spatial integration. Granger-causality analysis shows a pattern of male dominance and female dependence in joint consumption within romantic relationships. This study highlights gender-related neural synchronous patterns during joint consumption among couples, providing insights for further research in consumer decision-making.


Asunto(s)
Encéfalo , Conducta de Elección , Electroencefalografía , Relaciones Interpersonales , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Conducta de Elección/fisiología , Encéfalo/fisiología , Tiempo de Reacción/fisiología , Emociones/fisiología
13.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38566514

RESUMEN

Cooperation and competition are the most common forms of social interaction in various social relationships. Intergroup relationships have been posited to influence individuals' interpersonal interactions significantly. Using electroencephalography hyperscanning, this study aimed to establish whether intergroup relationships influence interpersonal cooperation and competition and the underlying neural mechanisms. According to the results, the in-group Coop-index is better than the out-group, whereas the out-group Comp-index is stronger than the in-group. The in-group functional connectivity between the frontal-central region and the right temporoparietal junction in the ß band was stronger in competition than cooperation. The out-group functional connectivity between the frontal-central region and the left temporoparietal junction in the α band was stronger in cooperation than competition. In both cooperation and competition, the in-group exhibited higher interbrain synchronization between the prefrontal cortex and parietal region in the θ band, as well as between the frontal-central region and frontal-central region in the α band, compared to the out-group. The intrabrain phase-locking value in both the α and ß bands can effectively predict performance in competition tasks. Interbrain phase-locking value in both the α and θ bands can be effectively predicted in a performance cooperation task. This study offers neuroscientific evidence for in-group favoritism and out-group bias at an interpersonal level.


Asunto(s)
Conducta Cooperativa , Electroencefalografía , Humanos , Electroencefalografía/métodos , Corteza Prefrontal , Relaciones Interpersonales , Lóbulo Parietal , Encéfalo , Mapeo Encefálico
14.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436464

RESUMEN

This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Conectoma , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Miedo
15.
Mol Cell Proteomics ; 22(6): 100567, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37172717

RESUMEN

Nasopharyngeal carcinoma (NPC), a malignant tumor distinctly characterized by ethnic and geographic distribution, is highly prevalent in Southern China and Southeast Asia. However, the molecular mechanisms of NPC have not been fully revealed at the proteomic level. In this study, 30 primary NPC samples and 22 normal nasopharyngeal epithelial tissues were collected for proteomics analysis, and a relatively complete proteomics landscape of NPC was depicted for the first time. By combining differential expression analysis, differential co-expression analysis, and network analysis, potential biomarkers and therapeutic targets were identified. Some identified targets were verified by biological experiments. We found that 17-AAG, a specific inhibitor of the identified target heat shock protein 90 (HSP90), could be a potential therapeutic drug for NPC. Finally, consensus clustering identified two NPC subtypes with specific molecular features. The subtypes and the related molecules were verified by an independent data set and may have different progression-free survival. The results of this study provide a comprehensive understanding of the proteomics molecular signatures of NPC and provide new perspectives and inspiration for prognostic determination and treatment of NPC.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091473

RESUMEN

A hallmark of complex sensory systems is the organization of neurons into functionally meaningful maps, which allow for comparison and contrast of parallel inputs via lateral inhibition. However, it is unclear whether such a map exists in olfaction. Here, we address this question by determining the organizing principle underlying the stereotyped pairing of olfactory receptor neurons (ORNs) in Drosophila sensory hairs, wherein compartmentalized neurons inhibit each other via ephaptic coupling. Systematic behavioral assays reveal that most paired ORNs antagonistically regulate the same type of behavior. Such valence opponency is relevant in critical behavioral contexts including place preference, egg laying, and courtship. Odor-mixture experiments show that ephaptic inhibition provides a peripheral means for evaluating and shaping countervailing cues relayed to higher brain centers. Furthermore, computational modeling suggests that this organization likely contributes to processing ratio information in odor mixtures. This olfactory valence map may have evolved to swiftly process ethologically meaningful odor blends without involving costly synaptic computation.


Asunto(s)
Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Animales , Conectoma , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Odorantes , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Órganos de los Sentidos/fisiología , Olfato/fisiología
17.
Nano Lett ; 24(17): 5189-5196, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636084

RESUMEN

The development of large-scale, high-quality ferroelectric semiconductor nanowire arrays with interesting light-emitting properties can address limitations in traditional wide-bandgap ferroelectrics, thus serving as building blocks for innovative device architectures and next-generation high-density optoelectronics. Here, we investigate the optical properties of ferroelectric CsGeX3 (X = Br, I) halide perovskite nanowires that are epitaxially grown on muscovite mica substrates by vapor phase deposition. Detailed structural characterizations reveal an incommensurate heteroepitaxial relationship with the mica substrate. Furthermore, photoluminescence that can be tuned from yellow-green to red emissions by varying the halide composition demonstrates that these nanowire networks can serve as platforms for future optoelectronic applications. In addition, the room-temperature ferroelectricity and ferroelectric domain structures of these nanowires are characterized using second harmonic generation (SHG) polarimetry. The combination of room-temperature ferroelectricity with photoluminescence in these nanowire arrays unlocks new avenues for the design of novel multifunctional materials.

18.
Nano Lett ; 24(30): 9406-9414, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39036992

RESUMEN

Extremely small iron oxide nanoparticle (ESIONP)-based stimuli-responsive switchable MRI contrast agents (CAs) show great promise for accurate detection of tumors due to their outstanding advantages of high specificity and low background signal. However, currently developed ESIONP-based switchable CAs often suffer single-biomarker-induced responses, which lack absolute specificity to pathological tissues, potentially diminishing diagnostic accuracy. In this study, weak acidity and hypoxia, two of the most remarkable characteristics of tumors, are introduced as dual biomarker stimuli to construct an ESIONP-based switchable MRI CA (DKL-CA), with its signal switch controlled by a "dual-key-and-lock" strategy. Only when DKL-CA is exposed to a coexisting weakly acidic and hypoxic environment can monodispersed ESIONPs form nanoclusters, thereby realizing a switch from the T1 to T2 contrast. Moreover, DKL-CA exhibits favorable biosafety and the capacity for precise tumor diagnosis in tumor-bearing mice. Overall, DKL-CA paves the way for designing highly accurate ESIONP-based MRI CAs for tumor diagnosis.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Neoplasias , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Animales , Ratones , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/diagnóstico , Nanopartículas Magnéticas de Óxido de Hierro/química , Línea Celular Tumoral
19.
J Neurosci ; 43(50): 8621-8636, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37845031

RESUMEN

Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and ß-adrenergic receptors. We found that stimulation of ß-adrenergic receptors increased primary branching of rodent astrocytes in vitro Conversely, astrocyte-conditional knockout of the ß1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function.SIGNIFICANCE STATEMENT This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the ß1-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the ß1-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.


Asunto(s)
Adrenérgicos , Astrocitos , Humanos , Ratones , Animales , Femenino , Adrenérgicos/metabolismo , Astrocitos/metabolismo , Transducción de Señal , Norepinefrina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos
20.
J Cell Mol Med ; 28(16): e70043, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39205481

RESUMEN

Renal ischaemia-reperfusion injury (RIRI) is a primary cause of acute kidney damage, occurring frequently in situations like renal transplantation, yet the underlying mechanisms were not fully understood. Sentrin-specific protease 1 (SENP1) is an important member of the SENP family, which is widely involved in various diseases. However, the role of SENP1 in RIRI has been unclear. In our study, we discovered that SENP1 was involved in RIRI and reduced renal cell apoptosis and oxidative stress at elevated levels. Further mechanistic studies showed that hypoxia-inducible factor-1α (HIF-1α) was identified as a substrate of SENP1. Furthermore, SENP1 deSUMOylated HIF-1α, which reduced the degradation of HIF-1α, and exerted a renoprotective function. In addition, the protective function was lost after application of the HIF-1α specific inhibitor KC7F2. Briefly, our results fully demonstrated that SENP1 reduced the degradation of HIF-1α and attenuated oxidative stress and apoptosis in RIRI by regulating the deSUMOylation of HIF-1α, suggesting that SENP1 may serve as a potential therapeutic target for the treatment of RIRI.


Asunto(s)
Apoptosis , Cisteína Endopeptidasas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Estrés Oxidativo , Daño por Reperfusión , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Sumoilación , Riñón/metabolismo , Riñón/patología , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA