Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(17): 10416-10430, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39119921

RESUMEN

Tn3 family transposons are a widespread group of replicative transposons, notorious for contributing to the dissemination of antibiotic resistance, particularly the global prevalence of carbapenem resistance. The transposase (TnpA) of these elements catalyzes DNA breakage and rejoining reactions required for transposition. However, the molecular mechanism for target site selection with these elements remains unclear. Here, we identify a QLxxLR motif in N-terminal of Tn3 TnpAs and demonstrate that this motif allows interaction between TnpA of Tn3 family transposon Tn1721 and the host ß-sliding clamp (DnaN), the major processivity factor of the DNA replication machinery. The TnpA-DnaN interaction is essential for Tn1721 transposition. Our work unveils a mechanism whereby Tn3 family transposons can bias transposition into certain replisomes through an interaction with the host replication machinery. This study further expands the diversity of mobile elements that use interaction with the host replication machinery to bias integration.


Asunto(s)
Replicación del ADN , Elementos Transponibles de ADN , Transposasas , Elementos Transponibles de ADN/genética , Transposasas/metabolismo , Transposasas/genética , Replicación del ADN/genética , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Secuencias de Aminoácidos
2.
J Infect Dis ; 229(6): 1711-1721, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38149984

RESUMEN

BACKGROUND: Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS: We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS: In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS: In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , China , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Mutación , Sustitución de Aminoácidos , Variación Genética , Masculino , Femenino , Infección Irruptiva
3.
J Proteome Res ; 23(4): 1174-1187, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38427982

RESUMEN

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Asunto(s)
Fotosíntesis , Synechocystis , Fotosíntesis/genética , Synechocystis/genética , Synechocystis/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ficocianina/metabolismo
4.
J Cell Biochem ; 125(2): e30499, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38009594

RESUMEN

The Goldview dyeing of the natural multiplasmid system of Lactobacillus plantarum PC518 was affected by temperature. The article want to identify the specific molecules that cause temperature sensitivity, then experiment on the universality of temperature sensitivity, and finally preliminarily analyze the influencing factors. At 5°C and 25°C, single pDNA, multiplasmid system, and linear DNA samples were electrophoretic on agarose gel prestained by Goldview 1, 2, 3, and acridine orange (AO), respectively. Eighteen vectors of Escherichia coli and two vectors shortened by cloning were mixed into multiplasmid systems with different member numbers, and then electrophoresis with AO staining was performed within the range of 5°C-45°C, with a linearized multiplasmid system as the control. The lane profiles (peaks) were captured with Image Lab 5.1 software. After electrophoresis, the nine-plasmid-2 system was dyed with AO solutions of different ionic strengths to detect the effect of ionic strength on temperature sensitivity. It was measured that the UV-visible absorption spectra of the nine-plasmid-2 system dissolved in AO solutions with different ionic strengths and pH. Further, a response surface model was constructed using Design-Expert.V8.0.6 software. The electrophoresis result showed that the multiplasmid system from L. plantarum PC518 stained by AO staining showed a weak band at 5°C and five bands at 25°C, which was similar to the result of staining with Goldview 1, 2, and 3. The synthetic nine-plasmid-1 system and nine-plasmid-2 system displayed different band numbers on the electrophoresis gel in the electrophoresis temperature range of 5°C-45°C, namely 3, 4, 6, 4, and 2 bands, as well as 2, 6, 7, 8, and 5 bands. Using the 1× Tris-acetate-EDTA (TAE)-AO solution, the poststaining results of the nine-plasmid-2 system in the temperature range of 5°C-45°C were 4, 6, 9, 9, and 7 bands, respectively. Further, using 5×, 10×, or 25× TAE buffer, the AO poststaining results at 5°C were 4, 2, and 1 bands, respectively. The ultraviolet spectral results from 5°C to 25°C showed that there was a significant difference (3.5 times) in the fluctuation amplitude at the absorption peak of 261.2 nm between 0× and 1-10× TAE-AO solution containing the nine-plasmid-2 system. Specifically, the fluctuation amplitudes of 0×, 1×, 5×, and 10× samples were 0.032, 0.109, 0.112, and 0.110, respectively. At the same time, using 1× and 10× TAE buffer, the AO-stained linear nine-plasmid-2 system remained stable and did not display temperature sensitivity. The response surface models of the AO-stained nine-plasmid-2 system intuitively displayed that the absorbance of the 1× TAE samples increased significantly with increasing temperature compared to the 0× TAE samples, regardless of the pH value. The findings confirmed a temperature-dependent effect in AO staining of natural or synthetic multiplasmid systems, with the optimum staining result occurring at 25°C. Ion strength was a necessary condition for the temperature sensitivity mechanism. This study layed the groundwork for further investigation into the reasons or underlying mechanisms of temperature sensitivity in AO staining of multiplasmid systems.


Asunto(s)
Acetatos , Naranja de Acridina , Colorantes , Etilenodiaminas , Naranja de Acridina/química , Temperatura , Plásmidos/genética , Ácido Edético
5.
J Am Chem Soc ; 146(1): 342-357, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112495

RESUMEN

Intrinsically disordered proteins (IDPs) frequently mediate phase separation that underlies the formation of a biomolecular condensate. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding the sequence-specific phase separation of IDPs. However, the widely used Cα-only models are limited in capturing the peptide nature of IDPs, particularly backbone-mediated interactions and effects of secondary structures, in phase separation. Here, we describe a hybrid resolution (HyRes) protein model toward a more accurate description of the backbone and transient secondary structures in phase separation. With an atomistic backbone and coarse-grained side chains, HyRes can semiquantitatively capture the residue helical propensity and overall chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for the direct simulation of spontaneous phase separation and, at the same time, appears accurate enough to resolve the effects of single His to Lys mutations. HyRes simulations also successfully predict increased ß-structure formation in the condensate, consistent with available experimental CD data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate the phase separation propensity as measured by the saturation concentration. The simulations successfully recapitulate the effect of these mutants on the helicity and phase separation propensity of TDP-43 CR. Analyses reveal that the balance between backbone and side chain-mediated interactions, but not helicity itself, actually determines phase separation propensity. These results support that HyRes represents an effective protein model for molecular simulation of IDP phase separation and will help to elucidate the coupling between transient secondary structures and phase separation.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Separación de Fases , Proteínas Intrínsecamente Desordenadas/química , Simulación por Computador , Péptidos/química , Estructura Secundaria de Proteína , Simulación de Dinámica Molecular , Conformación Proteica
6.
J Hepatol ; 80(1): 31-40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827470

RESUMEN

BACKGROUND & AIMS: Immunotherapy for chronic hepatitis B virus (HBV) infection has not yet demonstrated sufficient efficacy. We developed a non-integrative lentiviral-vectored therapeutic vaccine for chronic hepatitis B and tested its antiviral effects in HBV-persistent mice and two inactive HBsAg carriers. METHODS: Lentiviral vectors (LVs) encoding the core, preS1, or large HBsAg (LHBs) proteins of HBV were evaluated for immunogenicity in HBV-naïve mice and therapeutic efficacy in a murine model of chronic HBV infection. In addition, two inactive HBsAg carriers each received two doses of 5×107 transduction units (TU) or 1×108 TU of lentiviral-vectored LHBs (LV-LHBs), respectively. The endpoints were safety, LHBs-specific T-cell responses, and serum HBsAg levels during a 24-week follow-up. RESULTS: In the mouse models, LV-LHBs was the most promising in eliciting robust antigen-specific T cells and in reducing the levels of serum HBsAg and viral load. By the end of the 34-week observation period, six out of ten (60%) HBV-persistent mice vaccinated with LV-LHBs achieved serum HBsAg loss and significant depletion of HBV-positive hepatocytes in the liver. In the two inactive HBsAg carriers, vaccination with LV-LHBs induced a considerable increase in the number of peripheral LHBs-specific T cells in one patient, and a weak but detectable response in the other, accompanied by a sustained reduction of HBsAg (-0.31 log10 IU/ml and -0.46 log10 IU/ml, respectively) from baseline to nadir. CONCLUSIONS: A lentiviral-vectored therapeutic vaccine for chronic HBV infection demonstrated the potential to improve HBV-specific T-cell responses and deplete HBV-positive hepatocytes, leading to a sustained loss or reduction of serum HBsAg. IMPACT AND IMPLICATIONS: Chronic HBV infection is characterized by an extremely low number and profound hypo-responsiveness of HBV-specific T cells. Therapeutic vaccines are designed to improve HBV-specific T-cell responses. We show that immunization with a lentiviral-vectored therapeutic HBV vaccine was able to expand HBV-specific T cells in vivo, leading to reductions of HBV-positive hepatocytes and serum HBsAg.


Asunto(s)
Hepatitis B Crónica , Humanos , Ratones , Animales , Hepatitis B Crónica/prevención & control , Hepatitis B Crónica/tratamiento farmacológico , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Lentivirus/genética , Vacunas contra Hepatitis B/uso terapéutico , Vacunación
7.
Small ; : e2406489, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340269

RESUMEN

Silicon (Si) has attracted considerable attention as a promising alternative to graphite in lithium-ion batteries (LIBs) because of its high theoretical capacity and voltage. However, the durability and cycling stability of Si-based composites have emerged as major obstacles to their widespread adoption as LIBs anode materials. To tackle these challenges, a hollow core-shell dodecahedra structure of a Si-based composite (HD-Si@C) is developed through a novel double-layer in situ growth approach. This innovative design ensures that the nano-sized Si particles are evenly distributed within a hollow carbon shell, effectively addressing issues like Si fragmentation, volume expansion, and detachment from the carbon layer during cycles. The HD-Si@C composite demonstrates remarkable structural integrity as a LIBs anode, resulting in exceptional electrochemical performance and promising practical applications, as evidenced by tests in pouch-type full cells. Notably, the composite shows outstanding cycling stability, retaining 85% of its initial capacity (713 mAh g-1) even after 3000 cycles at a high current rate of 5000 mA g-1. Additionally, the material achieves a gravimetric energy density of 369 W h kg-1, showcasing its potential for efficient energy storage solutions. This research signifies a significant step toward realizing the practical utilization of Si-based materials in the next generation of LIBs.

8.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34657153

RESUMEN

Bacterial type IV secretion systems (T4SSs) are versatile and membrane-spanning apparatuses, which mediate both genetic exchange and delivery of effector proteins to target eukaryotic cells. The secreted effectors (T4SEs) can affect gene expression and signal transduction of the host cells. As such, they often function as virulence factors and play an important role in bacterial pathogenesis. Nowadays, T4SE prediction tools have utilized various machine learning algorithms, but the accuracy and speed of these tools remain to be improved. In this study, we apply a sequence embedding strategy from a pre-trained language model of protein sequences (TAPE) to the classification task of T4SEs. The training dataset is mainly derived from our updated type IV secretion system database SecReT4 with newly experimentally verified T4SEs. An online web server termed T4SEfinder is developed using TAPE and a multi-layer perceptron (MLP) for T4SE prediction after a comprehensive performance comparison with several candidate models, which achieves a slightly higher level of accuracy than the existing prediction tools. It only takes about 3 minutes to make a classification for 5000 protein sequences by T4SEfinder so that the computational speed is qualified for whole genome-scale T4SEs detection in pathogenic bacteria. T4SEfinder might contribute to meet the increasing demands of re-annotating secretion systems and effector proteins in sequenced bacterial genomes. T4SEfinder is freely accessible at https://tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/.


Asunto(s)
Biología Computacional , Lenguaje , Bacterias/genética , Genoma Bacteriano , Proteínas/genética , Sistemas de Secreción Tipo IV/genética
9.
Bioinformatics ; 39(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37740312

RESUMEN

MOTIVATION: Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors. RESULTS: We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph's topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks. AVAILABILITY AND IMPLEMENTATION: All code and data is available at https://github.com/haifangong/UCL-GLGNN.


Asunto(s)
Aminoácidos , Curriculum , Estabilidad Proteica , Redes Neurales de la Computación , Termodinámica
10.
J Transl Med ; 22(1): 440, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720358

RESUMEN

PURPOSE: To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-ß1 in rat Tenon's capsule fibroblasts. METHODS: Cultured rat Tenon's capsule fibroblasts were treated with TGF-ß1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-ß1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS: Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-ß1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS: MiR-146a effectively reduced TGF-ß1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.


Asunto(s)
Fibroblastos , Fibrosis , Cirugía Filtrante , Glaucoma , MicroARNs , Ratas Sprague-Dawley , Animales , MicroARNs/metabolismo , MicroARNs/genética , Glaucoma/patología , Glaucoma/genética , Cirugía Filtrante/efectos adversos , Fibroblastos/metabolismo , Masculino , Cápsula de Tenon/metabolismo , Cápsula de Tenon/patología , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Ratas , Proteína Smad4/metabolismo , Proteína Smad4/genética , FN-kappa B/metabolismo , Mitomicina/farmacología , Mitomicina/uso terapéutico , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA