RESUMEN
Timely and accurate detection of viruses is crucial for infection diagnosis and treatment. However, it remains a challenge to develop a portable device that meets the requirement of being portable, powerless, user-friendly, reusable, and low-cost. This work reports a compact ∅30 × 48 mm portable powerless isothermal amplification detection device (material cost â¼$1 USD) relying on LAMP (Loop-Mediated Isothermal Amplification). We have proposed chromatographic-strip-based microporous permeation technology which can precisely control the water flow rate to regulate the exothermic reaction. This powerless heating combined with phase-change materials can maintain a constant temperature between 50 and 70 °C for a duration of up to 49.8 min. Compared with the conventional methods, it avoids the use of an additional insulation layer for heat preservation, greatly reducing the size and cost. We have also deployed a color card and a corresponding algorithm to facilitate color recognition, data analysis, and storage using a mobile phone. The experimental results demonstrate that our device exhibits the same limit of detection (LOD) as the ProFlex PCR for SARS-CoV-2 pseudovirus samples, with that for both being 103 copies/µL, verifying its effectiveness and reliability. This work offers a timely, low-cost, and easy way for respiratory infectious disease detection, which could provide support in curbing virus transmission and protecting the health of humans and animals, especially in remote mountainous areas without access to electricity or trained professionals.
Asunto(s)
COVID-19 , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Humanos , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , Límite de DetecciónRESUMEN
Plant invasion is considered a high priority threat to biodiversity, ecosystems, the environment, and human health worldwide. Classical biological control (biocontrol) is a generally safer and more environmentally benign measure than chemical controls in managing invasive alien plants (IAPs). However, the impacts of climate change and the importance of climate matching in ensuring the efficiency of biocontrol candidates in controlling IAPs are likely to be underestimated. Here, based on the ensemble model and n-dimensional hypervolumes concepts, we estimated the overlapping areas between Ambrosia artemisiifolia and its two most effective natural enemies (Ophraella communa and Epiblema strenuana) under climate change in China. Moreover, we compared their ecological niches, further assessing the impact of climate change on the efficiency of two natural enemies in controlling A. artemisiifolia in China. We found that the potentially suitable areas of the two natural enemies and A. artemisiifolia were primarily influenced by temperature and human influence index variables. Under near-current climate, the overlapping area between O. communa and A. artemisiifolia was the largest, followed by E. strenuana and A. artemisiifolia, and both two natural enemies and A. artemisiifolia. The ecological niche between A. artemisiifolia and O. communa was most similar (0.64), followed by A. artemisiifolia and E. strenuana (0.55). The separate control (the niche separation areas of the two natural enemies against A. artemisiifolia) and joint-control (the niche overlap areas of the two natural enemies against A. artemisiifolia) efficiencies of the two natural enemies against A. artemisiifolia will both increase in future climates (the 2030s and 2050s) in northern and northeastern China. Our findings demonstrate a new approach to assess control efficiency and screen potential release areas of two natural enemies against A. artemisiifolia in China without the need for actual field release or experimentation. Moreover, our findings provide important clues for ensuring the classical biocontrol of IAPs worldwide.
Asunto(s)
Ambrosia , Ecosistema , Humanos , Plantas , Biodiversidad , ChinaRESUMEN
Key to regional sustainable development are the development and interplay of population dynamics and social welfare, each playing a significant role. As a representative region with demographic characteristics such as negative population growth and large labor outflow, the development and interaction between population and social welfare in Nanchong deserve in-depth exploration. This article takes the development of population and social welfare in Nanchong as the research object, and constructs an evaluation indicator system of population and social welfare through research backtracking, and uses entropy method and coupling coordination model to measure the development level and interactive effect of population and social welfare in Nanchong from 2010 to 2021. The research results show that: Firstly, the comprehensive evaluation results of population in Nanchong shows a linear upward trend, which indicates the stable positive effect of population structure and distribution, the gradual improvement effect of population quality effectively compensate for the weakening effect of population quantity, thus achieving the positive development of population. Secondly, the comprehensive evaluation results of social welfare in Nanchong shows an exponential upward trend, which indicates the social welfare has maintained a rapid growth momentum in various dimensions and the long-term positive effects have completely absorbed the negative effects, thus achieving the positive development of social welfare. Thirdly, during the sample period, the population and social welfare in Nanchong consistently maintained a high level of interaction strength, with factors diffusing and integrating. On this basis, the diffusion theory is used as an empirical reference to construct three interactive mechanisms between the population and social welfare in Nanchong and the implications are inferred from the empirical results.
Asunto(s)
Crecimiento Demográfico , Bienestar Social , Dinámica Poblacional , ChinaRESUMEN
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), which is native to tropical Africa, has invaded more than 100 countries and constitutes a risk to the citrus sector. Studying its potential geographical distribution (PGD) in the context of global climate change is important for prevention and control efforts worldwide. Therefore, we used the CLIMEX model to project and assess the risk of global invasion by C. capitata under current (1981-2010) and future (2040-2059) climates. In the prevailing climatic conditions, the area of PGD for C. capitata was approximately 664.8 × 105 km2 and was concentrated in South America, southern Africa, southern North America, eastern Asia, and southern Europe. Under future climate conditions, the area of PGD for C. capitata is projected to decrease to approximately 544.1 × 105 km2 and shift to higher latitudes. Cold stress was shown to affect distribution at high latitudes, and heat stress was the main factor affecting distribution under current and future climates. According to the predicted results, countries with highly suitable habitats for C. capitata that have not yet been invaded, such as China, Myanmar, and Vietnam, must strengthen quarantine measures to prevent the introduction of this pest.
RESUMEN
Invasive alien pests (IAPs) pose a major threat to global agriculture and food production. When multiple IAPs coexist in the same habitat and use the same resources, the economic loss to local agricultural production increases. Many species of the Diabrotica genus, such as Diabrotica barberi, Diabrotica undecimpunctata, and Diabrotica virgifera, originating from the USA and Mexico, seriously damaged maize production in North America and Europe. However, the potential geographic distributions (PGDs) and degree of ecological niche overlap among the three Diabrotica beetles remain unclear; thus, the potential coexistence zone is unknown. Based on environmental and species occurrence data, we used an ensemble model (EM) to predict the PGDs and overlapping PGD of the three Diabrotica beetles. The n-dimensional hypervolumes concept was used to explore the degree of niche overlap among the three species. The EM showed better reliability than the individual models. According to the EM results, the PGDs and overlapping PGD of the three Diabrotica beetles were mainly distributed in North America, Europe, and Asia. Under the current scenario, D. virgifera has the largest PGD ranges (1615 × 104 km2). In the future, the PGD of this species will expand further and reach a maximum under the SSP5-8.5 scenario in the 2050s (2499 × 104 km2). Diabrotica virgifera showed the highest potential for invasion under the current and future global warming scenarios. Among the three studied species, the degree of ecological niche overlap was the highest for D. undecimpunctata and D. virgifera, with the highest similarity in the PGD patterns and maximum coexistence range. Under global warming, the PGDs of the three Diabrotica beetles are expected to expand to high latitudes. Identifying the PGDs of the three Diabrotica beetles provides an important reference for quarantine authorities in countries at risk of invasion worldwide to develop specific preventive measures against pests.
Asunto(s)
Escarabajos , Animales , Calentamiento Global , Reproducibilidad de los Resultados , Agricultura/métodos , Ecosistema , Zea maysRESUMEN
Spodoptera exempta, known as the black armyworm, has been extensively documented as an invasive agricultural pest prevalent across various crop planting regions globally. However, the potential geographical distribution and the threat it poses to host crops of remains unknown at present. Therefore, we used an optimized MaxEnt model based on 841 occurrence records and 19 bioclimatic variables to predict the potential suitable areas of S. exempta under current and future climatic conditions, and the overlap with wheat, rice, and maize planting areas was assessed. The optimized model was highly reliable in predicting potential suitable areas for this pest. The results showed that high-risk distribution areas for S. exempta were mainly in developing countries, including Latin America, central South America, central Africa, and southern Asia. Moreover, for the three major global food crops, S. exempta posed the greatest risk to maize planting areas (510.78 × 104 km2), followed by rice and wheat planting areas. Under future climate scenarios, global warming will limit the distribution of S. exempta. Overall, S. exempta had the strongest effect on global maize production areas and the least on global wheat planting areas. Our study offers a scientific basis for global prevention of S. exempta and protection of agricultural crops.
RESUMEN
Cabomba caroliniana A. Gray, an ornamental submerged plant indigenous to tropical America, has been introduced to numerous countries in Europe, Asia, and Oceania, impacting native aquatic ecosystems. Given this species is a popular aquarium plant and widely traded, there is a high risk of introduction and invasion into other environments. In the current study the potential global geographic distribution of C. caroliniana was predicted under the effects of climate change and human influence in an optimised MaxEnt model. The model used rigorously screened occurrence records of C. caroliniana from hydro informatic datasets and 20 associated influencing factors. The findings indicate that temperature and human-mediated activities significantly influenced the distribution of C. caroliniana. At present, C. caroliniana covers an area of approximately 1531×104 km2 of appropriate habitat, especially in the south-eastern parts of South, central and North America, Southeast Asia, eastern Australia, and most of Europe. The suitable regions are anticipated to expand under future climate scenarios; however, the dynamics of the changes vary between different extents of climate change. For example, C. caroliniana is expected to expand to higher latitudes, following global temperature increases under SSP1-2.6 and SSP2-4.5 scenarios, however, intolerance to temperature extremes may mediate invasion at higher latitudes under future extreme climate scenarios, e.g., SSP5-8.5. Owing to the severe impacts its invasion causes, early warning and stringent border quarantine processes are required to guard against the introduction of C. caroliniana especially in the invasion hotspots such as, Peru, Italy, and South Korea.
RESUMEN
Phoracantha semipunctata is a destructive invasive alien forest pest worldwide. It primarily damages the eucalyptus via adults, affecting almost all parts of the eucalyptus. Its larvae develop in almost all major tissues of the plant. Phoracantha semipunctata spreads both via the migration of adults and global trade in intercontinental translocation. Currently, this pest has spread to six continents worldwide, except Antarctica, resulting in substantial economic losses. Based on global occurrence data and environmental variables, the potential global geographical distribution of P. semipunctata was predicted using an ensemble model. The centroid shift, overlap, unfilling, and expansion scheme were selected to assess niche dynamics during the global invasion process. Our results indicated that the AUC and TSS values of the ensemble model were 0.993 and 0.917, respectively, indicating the high prediction accuracy of the model. The distribution pattern of P. semipunctata is primarily attributed to the temperature seasonality (bio4), mean temperature of the warmest quarter (bio10), and human influence index variables. The potential geographical distribution of P. semipunctata is primarily in western and southwestern Asia, western Europe, western and southern North America, southern South America, southern Africa, and eastern and southern Oceania. The potential geographical distribution of P. semipunctata showed a downward trend in the 2030s and the 2050s. The distribution centroid showed a general tendency to shift southward from the near-current to future climate. Phoracantha semipunctata has largely conserved its niche during the global invasion process. More attention should be paid to the early warning, prevention, and control of P. semipunctata in the countries and regions where it has not yet become invasive.
RESUMEN
Sorghum halepense competes with crops and grass species in cropland, grassland, and urban environments, increasing invasion risk. However, the invasive historical dynamics and distribution patterns of S. halepense associated with current and future climate change and land-use change (LUC) remain unknown. We first analyzed the invasive historical dynamics of S. halepense to explore its invasion status and expansion trends. We then used a species distribution model to examine how future climate change and LUC will facilitate the invasion of S. halepense. We reconstructed the countries that have historically been invaded by S. halepense based on databases with detailed records of countries and occurrences. We ran biomod2 based on climate data and land-use data at 5' resolution, assessing the significance of environmental variables and LUC. Sorghum halepense was widely distributed worldwide through grain trade and forage introduction, except in Africa. Europe and North America provided most potential global suitable habitats (PGSHs) for S. halepense in cropland, grassland, and urban environments, representing 48.69%, 20.79%, and 84.82%, respectively. The future PGSHs of S. halepense increased continuously in the Northern Hemisphere, transferring to higher latitudes. Environmental variables were more significant than LUC in predicting the PGSHs of S. halepense. Future PGSHs of S. halepense are expected to increase, exacerbating the invasion risk through agricultural LUC. These results provide a basis for the early warning and prevention of S. halepense worldwide.
RESUMEN
Niche dynamics of invasive alien plants (IAPs) play pivotal roles in biological invasion. Ageratina adenophora-one of the most aggressive IAPs in China and some parts of the world-poses severe ecological and socioeconomic threats. However, the spatiotemporal niche dynamics of A. adenophora in China remain unknown, which we aimed to elucidate in the present study. China, Mexico; using a unifying framework, we reconstructed the climate niche dynamics of A. adenophora and applied the optimal MaxEnt model to predict its potential geographical distribution in China. Furthermore, we compared the heterogeneity of A. adenophora niche between Mexico (native) and China (invasive). We observed a low niche overlap between Mexico (native) and China (invasive). Specifically, the niche of A. adenophora in China has distinctly expanded compared to that in Mexico, enhancing the invasion risk of this IAP in the former country. In fact, the climatic niche of A. adenophora in Mexico is a subset of that in China. The potential geographical distribution of A. adenophora is concentrated in the tropical and subtropical zones of Southwest China, and its geographical distribution pattern in China is shaped by the combination of precipitation and temperature variables. The niche dynamics of A. adenophora follow the hypothesis of niche shift and conservatism. The present work provides a unifying framework for studies on the niche dynamics of other IAPs worldwide.
RESUMEN
Invasive alien plants (IAPs) substantially affect the native biodiversity, agriculture, industry, and human health worldwide. Ambrosia (ragweed) species, which are major IAPs globally, produce a significant impact on human health and the natural environment. In particular, invasion of A. artemisiifolia, A. psilostachya, and A. trifida in non-native continents is more extensive and severe than that of other species. Here, we used biomod2 ensemble model based on environmental and species occurrence data to predict the potential geographical distribution, overlapping geographical distribution areas, and the ecological niche dynamics of these three ragweeds and further explored the environmental variables shaping the observed patterns to assess the impact of these IAPs on the natural environment and public health. The ecological niche has shifted in the invasive area compared with that in the native area, which increased the invasion risk of three Ambrosia species during the invasion process in the world. The potential geographical distribution and overlapping geographical distribution areas of the three Ambrosia species are primarily distributed in Asia, North America, and Europe, and are expected to increase under four representative concentration pathways in the 2050s. The centers of potential geographical distributions of the three Ambrosia species showed a tendency to shift poleward from the current time to the 2050s. Bioclimatic variables and the human influence index were more significant in shaping these patterns than other factors. In brief, climate change has facilitated the expansion of the geographical distribution and overlapping geographical distribution areas of the three Ambrosia species. Ecomanagement and cross-country management strategies are warranted to mitigate the future effects of the expansion of these ragweed species worldwide in the Anthropocene on the natural environment and public health.
Asunto(s)
Ambrosia , Cambio Climático , Humanos , Especies Introducidas , Ecosistema , Europa (Continente)RESUMEN
Introduction: The establishment of invasive alien plants (IAPs) is primarily driven by climate warming and human activities, and their populations have a negative impact on agricultural economics, ecological systems, and human health. Lolium temulentum and Aegilops tauschii are critical IAPs in China because they reduce the quality of cereal grains and decrease wheat yields. Lolium temulentum is a winter-temperate weed that spreads easily and is poisonous to humans and animals. Aegilops tauschii is resistant to herbicides, has a high reproductive rate, and frequently grows in wheat. Both species have been listed in the Ministry of Agriculture and Rural Affairs of the People's Republic of China's management catalog since 2006. Methods: In the present study, the historical occurrence and invasion of each species were collected and reconstructed, which showed that the population outbreak of L. temulentum began in 2010, whereas that of A. tauschii began in 2000. Using the optimal MaxEnt model, the geographical distributions of L. temulentum and A. tauschii were predicted based on screened species occurrences and environmental variables under the current and three future scenarios in the 2030s and 2050s (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5). Results: The mean AUC values were 0.867 and 0.931 for L. temulentum and A. tauschii, respectively. Human influence index (HII), mean temperature of coldest quarter (bio11), and precipitation of coldest quarter (bio19) were the most significant variables for L. temulentum, whereas human influence index, temperature seasonality (standard deviation×100) (bio4), and annual mean temperature (bio1) were the critical environmental variables for A. tauschi. Suitable habitat areas in China for L. temulentum and A. tauschii currently covered total areas of 125 × 104 and 235 × 104 km2, respectively. Future suitable areas of L. temulentum reached the maximum under SSP2-4.5, from 2021 to 2060, whereas for A. tauschii they reached the maximum under SSP5-8.5, from 2021 to 2060. Furthermore, the overlap area under the current climate conditions for L. temulentum and A. tauschii was approximately 90 × 104 km2, mainly located in Hubei, Anhui, Jiangsu, Shandong, Henan, Shaanxi, Shanxi, and Hebei. The overlap areas decreased in the 2030s, increased in the 2050s, and reached a maximum under SSP1-2.6 (or SSP2-4.5) with an approximate area of 104 × 104 km2. The centroid of L. temulentum in Henan was transferred to the southwest, whereas for A. tauschii it transferred to higher latitudes in the northeast. Discussion: Our findings provide a practical reference for the early warning, control, and management of these two destructive IAP populations in China.
RESUMEN
Invasive crop pests (ICPs) are a major cause of crop losses and adversely affect global food security. Diuraphis noxia Kurdjumov is a significant ICP that feeds on the sap of crops, reducing crop yield and quality. Although estimating the geographical distribution patterns of D. noxia under climate change is critical for its management and global food security, such information remains unclear. Based on 533 global occurrence records and 9 bioclimatic variables, an optimized MaxEnt model was used to predict the potential global geographical distribution of D. noxia. The results showed that Bio1, Bio2, Bio7, and Bio12 were significant bioclimatic variables that influenced the potential geographical distribution of D. noxia. Under current climatic conditions, D. noxia was mainly distributed in west-central Asia, most of Europe, central North America, southern South America, southern and northern Africa, and southern Oceania. Under the SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 scenarios for the 2030s and 2050s, the potential suitable areas increased, and the centroid migrated to higher latitudes. The early warning of D. noxia in northwestern Asia, western Europe, and North America should be attended to further. Our results provide a theoretical basis for early monitoring and warning of D. noxia worldwide.
RESUMEN
The southern armyworm (Spodoptera eridania), a polyphagous crop pest native to tropical America, has been found in Africa (2016) and India (2019), causing defoliation and damage to the reproductive structures of cassava, soybean, and tomato. The damage caused by this pest to crop systems has raised concerns regarding its potential risks. Therefore, we predicted the potential geographical distribution of S. eridania under climate change conditions using 19 bioclimatic variables based on an optimized MaxEnt model. The results showed that annual precipitation (bio12), mean temperature of the warmest quarter (bio10), and precipitation of the driest month (bio14) were important bioclimatic variables influencing the potential distribution. The prediction showed that the suitable habitat area was approximately 3426.43 × 104 km2, mainly concentrated in southern North America, South America, western Europe, central Africa, southern Asia, and eastern Oceania. In response to global climate change, suitable habitats for S. eridania will expand and shift to higher latitudes in the future, especially under the SSP5-8.5 scenario. Because of the current devastating effects on crop production, countries without S. eridania invasion, such as the European Union, Southeast Asian countries, and Australia, need to strengthen phytosanitary measures at border ports to prevent the introduction of this pest.
RESUMEN
Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
RESUMEN
Pine wilt disease (PWD), caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus), a destructive, invasive forest pathogen, poses a serious threat to global pine forest ecosystems. The global invasion of PWN has been described based on three successive phases, introduction, establishment, and dispersal. Risk assessments of the three successive PWN invasion phases can assist in targeted management efforts. Here, we present a risk assessment framework to evaluate the introduction, establishment, and dispersal risks of PWD in China using network analysis, species distribution models, and niche concepts. We found that >88 % of PWN inspection records were from the United States, South Korea, Japan, Germany, and Mexico, and 94 % of interception records were primarily from the Jiangsu, Shanghai, Shandong, Tianjin, and Zhejiang ports. Based on the nearly current climate, the areas of PWN overlap with its host Pinus species were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions. Areas of PWN overlap with its insect vector Monochamus alternatus were primarily distributed in southern, eastern, Yangtze River Basin, central, and northeastern China regions, and those of PWN overlap with the insect vector Monochamus saltuarius were primarily distributed in eastern and northeastern China. The niche between PWN and the insect vector M. alternatus was the most similar (0.68), followed by that between PWN and the insect vector M. saltuarius (0.47). Climate change will increase the suitable probabilities of PWN and its two insect vectors occurring at high latitudes, further increasing their threat to hosts in northeastern China. This risk assessment framework for PWD could be influential in preventing the entry of the PWN and mitigating their establishment and dispersal risks in China. Our study provides substantial clues for developing a framework to improve the risk assessment and surveillance of biological invasions worldwide.
Asunto(s)
Escarabajos , Nematodos , Pinus , Animales , Ecosistema , Enfermedades de las Plantas , China , Insectos VectoresRESUMEN
High-voltage and high-power devices are indispensable in spacecraft for outer space explorations, whose operations require aerospace materials with adequate vacuum surface insulation performance. Despite persistent attempts to fabricate such materials, current efforts are restricted to trial-and-error methods and a universal design guideline is missing. The present work proposes to improve the vacuum surface insulation by tailoring the surface trap state density and energy level of the metal oxides with varied bandgaps, using coating on a polyimide (PI) substrate, aiming for a more systematical workflow for the insulation material design. First-principle calculations and trap diagnostics are employed to evaluate the material properties and reveal the interplay between trap states and the flashover threshold, supported by dedicated analyses of the flashover voltage, secondary electron emission (SEE) from insulators, and surface charging behaviors. Experimental results suggest that the coated PI (i.e., CuO@PI, SrO@PI, MgO@PI, and Al2O3@PI) can effectively increase the trap density and alter the trap energy levels. Elevated trap density is demonstrated to always yield lower SEE. In addition, increasing shallow trap density accelerates surface charge dissipation, which is favorable for improving surface insulation. CuO@PI exhibits the most remarkable increase in shallow trap density, and accordingly, the highest flashover voltage is 42.5% higher than that of pristine PI. This study reveals the critical role played by surface trap states in flashover mitigation and offers a novel strategy to optimize the surface insulation of materials.
RESUMEN
The interaction between green finance and other factors, such as ecological environment, has been a research hotspot nowadays. Especially, the reasonable guiding of capital into energy conservation and environmental protection industries would greatly affect those factors, so as to the relation between them. This paper aimed to analyze the relationships between green finance, technological progress, and ecological performance quantitatively. The entropy method was used to respectively construct the system of index for green finance and technological progress, and index for ecological performance was measured by the super-SBM model. The panel vector autoregressive (PVAR) model was selected to empirically analyze dynamic relationships based on datasets from 30 provinces in China during 2008-2019 period. The results told that (1) from 2008 to 2019, China's overall level of green finance, technological progress and ecological performance increased to varying degrees. Spatially, the areas with high-developed green finance greatly coincided with those such as large cities or the eastern coast that had good financial development. The distribution of technological progress index were similar, except some underdeveloped areas with relatively advanced scientific research institutes. The ecological performance, however, was high in the South and low in the north. (2) In the lag for 3 years, the influence of green finance on ecological performance in different regions was all positive for that all the coefficient symbols that passed the significance test were above 0, while that on technological progress was negative first and then positive. And the effects of technological progress on ecological performance were positive in ecological regions and negative in low ecological regions (0.0893 and -0.1211 in the case of three-stage lag respectively). (3) The contribution of green finance to ecological performance was high according to the results of variance decomposition, maintained at about 30%, and that of technological progress increased year by year (from 0.000 to 0.039). Therefore, we proposed to strengthen the development of green finance in underdeveloped regions. The emphasis should be laid on the researches and applications of green technology, the formulation of financing policies in innovation compensation and the establishment of a dynamic monitoring system for the ecological environment.
Asunto(s)
Conservación de los Recursos Naturales , Tecnología , China , Ciudades , Desarrollo Económico , IndustriasRESUMEN
Helicoverpa zea, a well-documented and endemic pest throughout most of the Americas, affecting more than 100 species of host plants. It is a quarantine pest according to the Asia and Pacific Plant Protection Commission (APPPC) and the catalog of quarantine pests for plants imported to the People's Republic of China. Based on 1781 global distribution records of H. zea and eight bioclimatic variables, the potential geographical distributions (PGDs) of H. zea were predicted by using a calibrated MaxEnt model. The contribution rate of bioclimatic variables and the jackknife method were integrated to assess the significant variables governing the PGDs. The response curves of bioclimatic variables were quantitatively determined to predict the PGDs of H. zea under climate change. The results showed that: (1) four out of the eight variables contributed the most to the model performance, namely, mean diurnal range (bio2), precipitation seasonality (bio15), precipitation of the driest quarter (bio17) and precipitation of the warmest quarter (bio18); (2) PGDs of H. zea under the current climate covered 418.15 × 104 km2, and were large in China; and (3) future climate change will facilitate the expansion of PGDs for H. zea under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 in both the 2030s and 2050s. The conversion of unsuitable to low suitability habitat and moderately to high suitability habitat increased by 8.43% and 2.35%, respectively. From the present day to the 2030s, under SSP1-2.6, SSP2-4.5 and SSP5-8.5, the centroid of the suitable habitats of H. zea showed a general tendency to move eastward; from 2030s to the 2050s, under SSP1-2.6 and SSP5-8.5, it moved southward, and it moved slightly northward under SSP2-4.5. According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to host plants and containers of H. zea and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.
RESUMEN
Invasive alien plants posed a significant threat to natural ecosystems, biodiversity, agricultural production, as well as human and livestock health. Lolium temulentum, an annual invasive alien weed with fibrous roots, can reduce wheat production and cause economic losses. Moreover, the consumption of grains or cereal products mixed with darnel can cause dizziness, vomiting, and even death. Therefore, darnel is regarded as one of â³the worst weeds around the worldâ³. In the present study, we predicted the potential global geographical distribution of L. temulentum using an optimal MaxEnt model, based on occurrence records and related environmental variables. The mean AUC, TSS, and KAPPA were 0.95, 0.778, and 0.75, indicating the MaxEnt model accuracy was excellent. The significant environmental variables, including the mean temperature of coldest quarter (bio 11), precipitation of coldest quarter (bio 19), temperature annual range (bio 7), and annual precipitation (bio 12), produced a great impact on the potential global geographical distribution of L. temulentum. Under the current climate, L. temulentum was primarily distributed in south-eastern Asia, Europe, and south-eastern North America. The widest total suitable habitat was distributed in Asia, covering nearly 796 × 104 km2. By the 2050s, the potential geographical distribution of L. temulentum was expected to decrease in the Northern Hemisphere, and shrink gradually in southern America, Africa, and Oceania. Moreover, the distribution center of L. temulentum was expected to shift from Asia to Europe. Based on these predictions, changes in the suitable habitats for L. temulentum between Europe and Asia warrant close attention to prevent further spread.