RESUMEN
Lissencephaly is a neurodevelopmental disorder characterized by a loss of brain surface convolutions caused by genetic variants that disrupt neuronal migration. However, the genetic origins of the disorder remain unidentified in nearly one-fifth of people with lissencephaly. Using whole-exome sequencing, we identified a de novo BAIAP2 variant, p.Arg29Trp, in an individual with lissencephaly with a posterior more severe than anterior (P>A) gradient, implicating BAIAP2 as a potential lissencephaly gene. Spatial transcriptome analysis in the developing mouse cortex revealed that Baiap2 is expressed in the cortical plate and intermediate zone in an anterior low to posterior high gradient. We next used in utero electroporation to explore the effects of the Baiap2 variant in the developing mouse cortex. We found that Baiap2 knockdown caused abnormalities in neuronal migration, morphogenesis and differentiation. Expression of the p.Arg29Trp variant failed to rescue the migration defect, suggesting a loss-of-function effect. Mechanistically, the variant interfered with the ability of BAIAP2 to localize to the cell membrane. These results suggest that the functions of BAIAP2 in the cytoskeleton, cell morphogenesis and migration are important for cortical development and for the pathogenesis of lissencephaly in humans.
Asunto(s)
Lisencefalia , Animales , Humanos , Ratones , Encéfalo/metabolismo , Movimiento Celular/genética , Citoesqueleto/metabolismo , Lisencefalia/genética , Lisencefalia/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismoRESUMEN
This study generated whole genome DNA methylation maps to characterize DNA methylomes of grape (cv. 'Cabernet Franc') skins and examine their functional significance during grape skin coloration. We sampled grape skin tissues at three key stages (the early stage of grape berry swelling, the late stage of grape berry swelling and the veraison) during which the color of grape berries changed from green to red. DNA methylation levels of grape skins at the three stages were higher in transposable element regions than in the genic regions, and the CG and CHG DNA methylation levels of the genic region were higher than the CHH DNA methylation levels. We identified differentially methylated regions (DMRs) in S2_vs_S1 and S3_vs_S1. The results indicated that DMRs predominantly occurred within the CHH context during grape skin coloration. Many gene ontology (GO)-enriched DMR-related genes were involved in "nucleotide binding," "catalytic activity" and "ribonucleotide binding" terms; however, many KEGG-enriched DMR-related genes were involved in the "flavonoid biosynthesis" pathway. Our results could provide an important foundation for future research on the development mechanism of grape berries.
Asunto(s)
Vitis , Vitis/genética , Metilación de ADN , Frutas , Genes de Plantas , Análisis de Secuencia de ARNRESUMEN
Mucopolysaccharidosis type IIIC (MPS IIIC) is one of inherited lysosomal storage disorders, caused by deficiencies in lysosomal hydrolases degrading acidic mucopolysaccharides. The gene responsible for MPS IIIC is HGSNAT, which encodes an enzyme that catalyses the acetylation of the terminal glucosamine residues of heparan sulfate. So far, few studies have focused on the genetic landscape of MPS IIIC in China, where IIIA and IIIB were the major subtypes. In this study, we utilized whole-exome sequencing (WES) to identify novel compound heterozygous variants in the HGSNAT gene from a Chinese patient with typical MPS IIIC symptoms: c.743G>A; p.Gly248Glu and c.1030C>T; p.Arg344Cys. We performed in silico analysis and experimental validation, which confirmed the deleterious pathogenic nature of both variants, as evidenced by the loss of HGSNAT activity and failure of lysosomal localization. To the best of our knowledge, the MPS IIIC is first confirmed by clinical, biochemical and molecular genetic findings in China. Our study thus expands the spectrum of MPS IIIC pathogenic variants, which is of importance to dissect the pathogenesis and to carry out clinical diagnosis of MPS IIIC. Moreover, this study helps to depict the natural history of Chinese MPS IIIC populations.
Asunto(s)
Mucopolisacaridosis , Mucopolisacaridosis III , Humanos , Acetilación , Acetiltransferasas , Pueblo Asiatico/genética , China , Mucopolisacaridosis/genética , Mucopolisacaridosis III/genéticaRESUMEN
Extensive applications of bisphenols in industrial products have led to their release into aquatic environments, causing a great threat to human health due to their endocrine-disrupting effects, whereas existing methods are difficult to implement the rapid and high-throughput detection of multiple bisphenols. To circumvent this issue, we constructed a sensor array using two luminescent metal-organic frameworks (LMOFs) (Zr-BUT-12 and Ga-MIL-61) for the rapid discrimination of six bisphenol contaminants (BPA, BPS, BPB, BPF, BPAF, and TBBPA). Wherein, Zr-BUT-12 and Ga-MIL-61 exhibited different fluorescence-emission properties and good luminescent stability. Interestingly, bisphenols with different structures had diverse quenching effects on the fluorescence intensity of Zr-BUT-12 and Ga-MIL-61 via the adsorptive interaction, resulting in unique fluorescent fingerprints. Based on pattern recognition methods, different bisphenols were successfully identified, with the limit of detection in the range of 1.59-16.7 ng/mL for six bisphenols. More importantly, the developed sensor array could be effectively utilized for distinguishing different ratios of mixed bisphenols, which was further applied for bisphenol discrimination in real water samples. Consequently, our finding provides a promising strategy for the simultaneous recognition of multiple bisphenols, which encourages the development of a sensor array for the detection of multiple contaminants in environmental monitoring and food safety.
Asunto(s)
Estructuras Metalorgánicas , Fenoles , Fenoles/análisis , Fenoles/química , Estructuras Metalorgánicas/química , Colorantes Fluorescentes/química , Compuestos de Bencidrilo/análisis , Contaminantes Químicos del Agua/análisis , Estructura Molecular , Espectrometría de FluorescenciaRESUMEN
Benefiting from easy visualization and simultaneous detection of multiple targets, fluorescence microbeads are commonly used as fluorescence-sensing elements to detect pollutants in the environment. However, the application of fluorescence microbead-based sensor arrays is still limited because fluorescence dyes always suffer from self-quenching, photobleaching, and spectral overlap. Herein, three kinds of gold nanoclusters (Au NCs) were assembled with polystyrene microspheres (PS NPs) by electrostatic interaction to prepare fluorescence microbeads (PS-Au NCs), developing a sensor array for the simultaneous analysis of multiple metal ions. In this work, different PS-Au NCs showed an enhancing or quenching fluorescence response to various metal ions, owing to distinct binding capacities. Combined with the recognition algorithm from linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA), this sensor assay could realize single-component and multicomponent qualitative detection for 8 kinds of heavy metal ions (HMIs) including Cu2+, Co2+, Pb2+, Hg2+, and Ce3+. Particularly, the large surface area of PS NPs could provide a direct reaction microenvironment to improve the efficiency of the detection process. Meanwhile, the fluorescence property of Au NCs could also be enhanced by a partially effective aggregation-induced emission (AIE) effect to give better fluorescence signal output. Under optimal conditions, 8 kinds of heavy metals and their multicomponent mixtures could be identified at concentrations as low as 0.62 µM. Meanwhile, the analytical performance of this sensor assay in water samples was also verified, meeting the requirement of actual analysis. This study provides a great potential and practical example of single-batch, multicomponent identification for HMIs.
RESUMEN
The reliable and efficient nitrite production rate (NPR) through nitritation process is the prerequisite for the efficient running of subsequent processes, like the anammox process and the nitrite shunt. However, there has been scant research on stable and productive nitritation process in recent years. In this study, at a stable hydraulic retention time of 12.0 h and with precise and strict DO control, the upper limit of the NPR was initially investigated using a continuous-flow granular sludge reactor. The NPR of 1.69 kg/m3/d with a nitrite production efficiency of 81.97% was finally achieved, which set a record until now in similar research. The median sludge particle size of 270.0 µm confirmed the development of clearly defined granular sludge. The genus Nitrosomonas was the major ammonium oxidizing bacteria. In conclusion, this study provides valuable insights for the practical application of the effective nitritation process driving subsequent nitrogen removal processes.
Asunto(s)
Reactores Biológicos , Nitritos , Nitrógeno , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Nitritos/metabolismo , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Nitrosomonas/metabolismo , Compuestos de Amonio/metabolismoRESUMEN
Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.
Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Ratas , Animales , Microbioma Gastrointestinal/genética , Ácido Linoleico , Cirrosis Hepática/inducido químicamente , Acetil-CoA CarboxilasaRESUMEN
The selection of different organic ligands when synthesizing metal organic framework (MOFs) can change their effects on the adsorption performance. Here, four La-MOFs adsorbents (La-SA, La-FA, La-TA and La-OA) with different organic ligands and structures were synthesized by solvothermal method for phosphate adsorption, and the relationship between their adsorption properties and structures was established. Among four La-MOFs, their phosphate adsorption capacities and adsorption rates followed La-SA > La-FA > La-TA > La-OA. The results indicated that average pore diameter played a key role in phosphate adsorption and there was a positive correlation between average pore diameter and adsorption capacity (R2 = 0.86). Coexisting ion experiments showed that phosphate adsorptions on three La-MOFs (La-SA, La-FA and La-TA) were inhibited in the presence of CO32- and HCO3-. The inhibition of CO32- was the most pronounced and the results of redundancy analysis pointed out that it was mainly due to the change of pH value. In contrast, La-OA showed enhanced phosphate adsorption in the presence of CO32- and HCO3-, and the combination of pH experiments showed that phosphate adsorption by La-OA was increased under alkaline conditions. Further combined with FT-IR, XRD, high resolution energy spectra of XPS (La 3d, P 2p and O 1s) and XANES, the adsorption mechanisms were derived electrostatic attraction, chemical precipitation and inner sphere complexation, and the last two were identified as the main mechanisms. Moreover, it can be identified from XPS 2p that the phosphate adsorption on La-FA and La-OA were mainly in the LaPO4 state, while La-SA and La-TA mainly existed in the form of LaPO4·xH2O crystals and inner sphere complexes. From the perspective of material morphology, this work provides a thought for the rational design of MOFs with adjustable properties for phosphate adsorption.
Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Fosfatos/química , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Ligandos , Lantano/química , CinéticaRESUMEN
BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disorder in which excessive CD4+ T-cell activation and imbalanced effector T-cell differentiation play critical roles. Recent studies have implied a potential association between posttranscriptional N6-methyladenosine (m6A) modification and CD4+ T-cell-mediated humoral immunity. However, how this biological process contributes to lupus is not well understood. In this work, we investigated the role of the m6A methyltransferase like 3 (METTL3) in CD4+ T-cell activation, differentiation, and SLE pathogenesis both in vitro and in vivo. METHODS: The expression of METTL3 was knocked down and METTL3 enzyme activity was inhibited using siRNA and catalytic inhibitor, respectively. In vivo evaluation of METTL3 inhibition on CD4+ T-cell activation, effector T-cell differentiation, and SLE pathogenesis was achieved using a sheep red blood cell (SRBC)-immunized mouse model and a chronic graft versus host disease (cGVHD) mouse model. RNA-seq was performed to identify pathways and gene signatures targeted by METTL3. m6A RNA-immunoprecipitation qPCR was applied to confirm the m6A modification of METTL3 targets. RESULTS: METTL3 was defective in the CD4+ T cells of SLE patients. METTL3 expression varied following CD4+ T-cell activation and effector T-cell differentiation in vitro. Pharmacological inhibition of METTL3 promoted the activation of CD4+ T cells and influenced the differentiation of effector T cells, predominantly Treg cells, in vivo. Moreover, METTL3 inhibition increased antibody production and aggravated the lupus-like phenotype in cGVHD mice. Further investigation revealed that catalytic inhibition of METTL3 reduced Foxp3 expression by enhancing Foxp3 mRNA decay in a m6A-dependent manner, hence suppressing Treg cell differentiation. CONCLUSION: In summary, our findings demonstrated that METTL3 was required for stabilizing Foxp3 mRNA via m6A modification to maintain the Treg differentiation program. METTL3 inhibition contributed to the pathogenesis of SLE by participating in the activation of CD4+ T cells and imbalance of effector T-cell differentiation, which could serve as a potential target for therapeutic intervention in SLE.
Asunto(s)
Lupus Eritematoso Sistémico , Metiltransferasas , Linfocitos T Reguladores , Animales , Ratones , Diferenciación Celular , Factores de Transcripción Forkhead/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Linfocitos T Reguladores/metabolismoRESUMEN
INTRODUCTION: Pneumonia is an inflammation-related respiratory infection and chlorogenic acid (CGA) possesses a wide variety of bioactive properties, such as anti-inflammation and anti-bacteria. AIM: This study explored the anti-inflammatory mechanism of CGA in Klebsiella pneumoniae (Kp)-induced rats with severe pneumonia. METHODS: The pneumonia rat models were established by infection with Kp and treated with CGA. Survival rates, bacterial load, lung water content, and cell numbers in the bronchoalveolar lavage fluid were recorded, lung pathological changes were scored, and levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay. RLE6TN cells were infected with Kp and treated with CGA. The expression levels of microRNA (miR)-124-3p, p38, and mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) in lung tissues and RLE6TN cells were quantified by real-time quantitative polymerase chain reaction or Western blotting. The binding of miR-124-3p to p38 was validated by the dual-luciferase and RNA pull-down assays. In vitro, the functional rescue experiments were performed using miR-124-3p inhibitor or p38 agonist. RESULTS: Kp-induced pneumonia rats presented high mortality, increased lung inflammatory infiltration and the release of inflammatory cytokines, and enhanced bacterial load, while CGA treatment improved rat survival rates and the above situations. CGA increased miR-124-3p expression, and miR-124-3p inhibited p38 expression and inactivated the p38MAPK pathway. Inhibition of miR-124-3p or activation of the p38MAPK pathway reversed the alleviative effect of CGA on pneumonia in vitro. CONCLUSION: CGA upregulated miR-124-3p expression and inactivated the p38MAPK pathway to downregulate inflammatory levels, facilitating the recovery of Kp-induced pneumonia rats.
Asunto(s)
MicroARNs , Neumonía , Ratas , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico , Klebsiella pneumoniae/genética , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Klebsiella/genética , Klebsiella/metabolismo , MicroARNs/genética , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Citocinas/metabolismo , Antiinflamatorios/farmacologíaRESUMEN
In plant cells, multiple paralogs from ribosomal protein (RP) families are always synchronously expressed, which is likely contributing to ribosome heterogeneity or functional specialization. However, previous studies have shown that most RP mutants share common phenotypes. Consequently, it is difficult to distinguish whether the phenotypes of the mutants have resulted from the loss of specific genes or a global ribosome deficiency. Here, to investigate the role of a specific RP gene, we employed a gene overexpression strategy. We found that Arabidopsis lines overexpressing RPL16D (L16D-OEs) display short and curled rosette leaves. Microscopic observations reveal that both the cell size and cell arrangement are affected in L16D-OEs. The severity of the defect is positively correlated with RPL16D dosage. By combining transcriptomic and proteomic profiling, we found that overexpressing RPL16D decreases the expression of genes involved in plant growth, but increases the expression of genes involved in immune response. Overall, our results suggest that RPL16D is involved in the balance between plant growth and immune response.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteómica , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , FenotipoRESUMEN
Phosphorus (P), a non-renewable essential resource, faces heavy exploitation and contributes to eutrophication in aquatic environments. Assessing P input is vital for a healthier P cycle in the Upper Yangtze River (UYR), a phosphate ore rich basin, where P mining and P chemical enterprises have prominent pollution problems. This study modified the net anthropogenic phosphorus input (NAPI) model to include ore mining P input (Pore). We analyzed the evolutionary characteristics of P input in five sub-basins of UYR from 1989 to 2019 using prefecture-level data, and assessed the uncertainty of the data. NAPI in all sub-basins exhibited an upward and then downward trend during 1989-2019, with the inflection point occurring in 2015 or 2016, showing a net increase of about 1.1 times (568-1162 kg P km-2 yr-1) in the whole UYR basin. Among the components of NAPI, P fertilizer inputs (Pfer) and food/non-food and feed P inputs (Pf/nf&feed) contributed comparably, though the growth rate of Pfer was most notable basin-wide. Pore proportion increased significantly (about 3-fold), with a peak of 20%, especially in Wujiang sub-basin. The multi-year (1989-2019) average NAPI in UYR rose sequentially from west to east, with hotspot areas mainly concentrated in the Sichuan-Chongqing urban agglomeration and cities of Hubei province. The regional P input closely related to the population density and the level of agricultural development, certainly the phosphate mining was also unignorable. This study emphasizes that based on current status of NAPI development in UYR, targeted management for different regions should focus on improving agricultural P use efficiency and rational exploitation of P mineral resources.
Asunto(s)
Fosfatos , Fósforo , Fósforo/análisis , Ríos , Monitoreo del Ambiente , China , Nitrógeno/análisisRESUMEN
OBJECTIVES: This study aims to investigate the genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD), and to analyze the effects of DNA methylation on Wnt/ß-catenin and chemokine signaling pathways. METHODS: PBMCs were collected from 19 patients with SSc (SSc group) and 18 healthy persons (control group). Among SSc patients, there were 10 patients with ILD (SSc with ILD subgroup) and 9 patients without ILD (SSc without ILD subgroup). The genome-wide DNA methylation and gene expression level were analyzed by using Illumina 450K methylation chip and Illumina HT-12 v4.0 gene expression profiling chip. The effect of DNA methylation on Wnt/ß-catenin and chemokine signal pathways was investigated. RESULTS: Genome-wide DNA methylation analysis identified 71 hypermethylated CpG sites and 98 hypomethylated CpG sites in the SSc with ILD subgroup compared with the SSc without ILD subgroup. Transcriptome analysis distinguished 164 upregulated genes and 191 downregulated genes in the SSc with ILD subgroup as compared with the SSc without ILD subgroup. In PBMCs of the SSc group, 35 genes in Wnt/ß-catenin signaling pathway were hypomethylated, while frizzled-1 (FZD1), mitogen-activated protein kinase 9 (MAPK9), mothers against DPP homolog 2 (SMAD2), transcription factor 7-like 2 (TCF7L2), and wingless-type MMTV integration site family, member 5B (WNT5B) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of dickkopf homolog 2 (DKK2), FZD1, MAPK9 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). In PBMCs of the SSc group, 38 genes in chemokine signaling pathway were hypomethylated, while ß-arrestin 1 (ARRB1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 16 (CXCL16), FGR, and neutrophil cytosolic factor 1C (NCF1C) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of ARRB1, CXCL10, CXCL16 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). CONCLUSIONS: There are differences in DNA methylation and transcriptome profiles between SSc with ILD and SSc without ILD. The expression levels of multiple genes in Wnt/ß- catenin and chemokine signaling pathways are upregulated, which might be associatea with the pathogenesis of SSc.
Asunto(s)
Metilación de ADN , Transcriptoma , Humanos , beta Catenina , Leucocitos Mononucleares , Ligandos , ADN , ARN Mensajero/genéticaRESUMEN
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects various organs or systems. We performed metabolomic and lipidomic profiles analyses of 133 SLE patients and 30 HCs. Differential metabolites and lipids were integrated, and then the biomarker panel was identified using binary logistic regression. We found that a combination of four metabolites or lipids could distinguish SLE from HC with an AUC of 0.998. Three lipids were combined to differentiate inactive SLE and active SLE. The AUC was 0.767. In addition, we also identified the biomarkers for different organ phenotypes of SLE. The AUCs for diagnosing SLE patients with only kidney involvement, skin involvement, blood system involvement, and multisystem involvement were 0.766, 0.718, 0.951, and 0.909, respectively. Our study succeeded in identifying biomarkers associated with different clinical phenotypes in SLE patients, which could facilitate a more precise diagnosis and assessment of disease progression in SLE.
Asunto(s)
Lipidómica , Lupus Eritematoso Sistémico , Biomarcadores , Humanos , Lípidos , Lupus Eritematoso Sistémico/genética , MetabolómicaRESUMEN
BACKGROUND: Oncogenic metabolic reprogramming contributes to tumor growth and immune evasion. The intertumoral metabolic heterogeneity and interaction of distinct metabolic pathways may determine patient outcomes. In this study, we aim to determine the clinical and immunological significance of metabolic subtypes according to the expression levels of genes related to glycolysis and cholesterol-synthesis in bladder cancer (BCa). METHODS: Based on the median expression levels of glycolytic and cholesterogenic genes, patients were stratified into 4 subtypes (mixed, cholesterogenic, glycolytic, and quiescent) in an integrated cohort including TCGA, GSE13507, and IMvigor210. Clinical, genomic, transcriptomic, and tumor microenvironment characteristics were compared between the 4 subtypes. RESULTS: The 4 metabolic subtypes exhibited distinct clinical, molecular, and genomic patterns. Compared to quiescent subtype, mixed subtype was more likely to be basal tumors and was significantly associated with poorer prognosis even after controlling for age, gender, histological grade, clinical stage, and molecular phenotypes. Additionally, mixed tumors harbored a higher frequency of RB1 and LRP1B copy number deletion compared to quiescent tumors (25.7% vs. 12.7 and 27.9% vs. 10.2%, respectively, both adjusted P value< 0.05). Furthermore, aberrant PIK3CA expression level was significantly correlated with those of glycolytic and cholesterogenic genes. The quiescent subtype was associated with lower stemness indices and lower signature scores for gene sets involved in genomic instability, including DNA replication, DNA damage repair, mismatch repair, and homologous recombination genes. Moreover, quiescent tumors exhibited lower expression levels of pyruvate dehydrogenase kinases 1-3 (PDK1-3) than the other subtypes. In addition, distinct immune cell infiltration patterns were observed across the 4 metabolic subtypes, with greater infiltration of M0/M2 macrophages observed in glycolytic and mixed subtypes. However, no significant difference in immunotherapy response was observed across the 4 metabolic subtypes. CONCLUSION: This study proposed a new metabolic subtyping method for BCa based on genes involved in glycolysis and cholesterol synthesis pathways. Our findings may provide novel insight for the development of personalized subtype-specific treatment strategies targeting metabolic vulnerabilities.
Asunto(s)
Colesterol/biosíntesis , Glucólisis/genética , Sistema Inmunológico/citología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología , Fosfatidilinositol 3-Quinasa Clase I/genética , Variaciones en el Número de Copia de ADN , Reparación del ADN/genética , Bases de Datos Genéticas , Inestabilidad Genómica/genética , Glucólisis/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Oncogenes/genética , Oncogenes/inmunología , Polimorfismo de Nucleótido Simple , Pronóstico , Receptores de LDL/genética , Proteínas de Unión a Retinoblastoma/genética , Transducción de Señal , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Ubiquitina-Proteína Ligasas/genética , Neoplasias de la Vejiga Urinaria/mortalidadRESUMEN
Chitosanase, a glycoside hydrolase (GH), catalyzes the cleavage of ß-1,4-glycosidic bonds in polysaccharides and is widely distributed in nature. Many organisms produce chitosanases, and numerous chitosanases in the GH families have been intensely studied. The reported chitosanases mainly cleaved the inter-glucosamine glycosidic bonds, while substrate specificity is not strictly unique due to the existence of bifunctional or multifunctional activity profiles. The promiscuity of chitosanases is essential for the different pathways of biomass polysaccharide conversion and understanding of the chitosanase evolutionary process. However, the reviews for this aspect are completely unknown. This review provides an overview of the promiscuous activities, also considering the substrate and product specificity of chitosanases observed to date. These contribute to important implications for the future discovery and research of promiscuous chitosanases and applications related to biomass conversion. KEY POINTS: ⢠The promiscuity of chitosanases is reviewed for the first time. ⢠The current review provides insights into the substrate specificity of chitosanases. ⢠The mode-product relationship and prospect of promiscuous chitosanases are highlighted.
Asunto(s)
Quitosano , Glicósido Hidrolasas , Quitosano/metabolismo , Glucosamina , Glicósido Hidrolasas/metabolismo , Especificidad por SustratoRESUMEN
BACKGROUND: In order to curb healthcare workplace violence (WPV) and better allocate healthcare resources, China launched the descending resources reform in 2013 and tightened the anti-violence legal environment simultaneously. Medical students are expected to reconsider their working intentions of entering the medical market (inter-market effect) and choosing high- or low-level hospitals (intra-market effect) in response to the evolving WPV. The goal of this study was to explore the link between the perceived WPV incidence and medical students' willingness to practice medicine in the context of China's descending resources reform. METHOD: Medical students were selected with cluster sampling from 8 medical colleges in Zhejiang Province, China, and 1497 valid questionnaires were collected by using a five-point unbalanced scale, to perform cross-sectional empirical research using the ordered logit model (OLM). RESULTS: The perceived WPV incidence negatively correlate with the willingness of medical students to practice medicine but positively correlate with their willingness to practice in low-level hospitals, indicating the existence of inter- and intra-market effects. The anti-violence legal environment has no direct link with working intention but contributes to the perceived decline in the incidence of violence. Descending resources reform has simultaneous opposite effects on medical students, with the coexistence of prudent motives driven by reform costs and optimistic expectations of sharing external benefits. CONCLUSIONS: Safety needs and risk aversion motive play an important role in medical students' career choice when facing severe WPV. Tightening of the anti-violence legal environment and the descending resources reform could drive medical students to low-level hospitals.
Asunto(s)
Estudiantes de Medicina , Violencia Laboral , China/epidemiología , Estudios Transversales , Atención a la Salud , Humanos , Intención , Encuestas y Cuestionarios , Lugar de TrabajoRESUMEN
Fouling and mud-pumping problems in ballasted track significantly degrade serviceability and jeopardize train operational safety. The phenomenological approaches for post hoc forensic investigation and remedies of mud pumps have relatively been well studied, but there still lacks studies on inherent mechanisms and ex ante approaches for early-age detection of mud pumps. This paper was aimed to exploring the feasibility of using particle acceleration responses to diagnose and identify early-age mud-pumping risks in real-world field applications. The innovative wireless sensors with 3D-printed shells resembling real shape of ballast particles were instrumented in the problematic railway section to monitor ballast particle movement prior to, during, and after maintenance operations, respectively. The real-time particle-scale acceleration data of ballast bed under both degraded and maintenance-restored clean conditions were recorded. The time histories, power spectra, and marginal spectra of 3D acceleration were comparatively analyzed. The results showed the 3D acceleration of ballast particles underneath rail-supporting tie plates displayed relatively clear periodicity of about 0.8 s with adjacent bogies regarded as a loading unit. The tamping operation was effective for compacting ballast bed laterally and improving the lateral interlocking of ballast particles, whereas the stabilizing operation was effective mainly in the lateral direction and for ballast particles underneath the sleepers. The mud pumps caused intensive particle-scale acceleration, and ballast particles underneath the sleepers were affected more severely than those in between adjacent sleepers. The ballast particles directly underneath tie plates exhibit dramatic acceleration variations due to maintenance operations as compared to those in other positions studied; hence, it seems promising to use particle-scale acceleration underneath tie plates as readily-implementable indicators for smart in-service track health monitoring.
Asunto(s)
AceleraciónRESUMEN
This study examines the impact of the 2003 SARS epidemic on the total factor productivity (TFP) of Chinese industrial enterprises using a difference-in-differences (DID) approach. The results exhibit that SARS significantly reduces TFP by 3.12-5.81%, lasting for three to five years. Further, this impact is heterogeneous across industries. A significantly negative impact is found in labor intensive industries, while capital and technology intensive industries is less affected. Contrarily, a significantly positive impact is observed in those industries necessary for life and production. Mechanism tests show that the impact on TFP is caused by a reduction in labour productivity and a decrease in innovation investment after SARS outbreak. This study highlights the importance of more targeted policy on Covid-19 and similar epidemics both in industrial, national and international level.
RESUMEN
Cutaneous lupus erythematosus (CLE) is an inflammatory, autoimmune disease encompassing a broad spectrum of subtypes including acute, subacute, chronic and intermittent CLE. Among these, chronic CLE can be further classified into several subclasses of lupus erythematosus (LE) such as discoid LE, verrucous LE, LE profundus, chilblain LE and Blaschko linear LE. To provide all dermatologists and rheumatologists with a practical guideline for the diagnosis, treatment and long-term management of CLE, this evidence- and consensus-based guideline was developed following the checklist established by the international Reporting Items for Practice Guidelines in Healthcare (RIGHT) Working Group and was registered at the International Practice Guideline Registry Platform. With the joint efforts of the Asian Dermatological Association (ADA), the Asian Academy of Dermatology and Venereology (AADV) and the Lupus Erythematosus Research Center of Chinese Society of Dermatology (CSD), a total of 25 dermatologists, 7 rheumatologists, one research scientist on lupus and 2 methodologists, from 16 countries/regions in Asia, America and Europe, participated in the development of this guideline. All recommendations were agreed on by at least 80% of the 32 voting physicians. As a consensus, diagnosis of CLE is mainly based on the evaluation of clinical and histopathological manifestations, with an exclusion of SLE by assessment of systemic involvement. For localized CLE lesions, topical corticosteroids and topical calcineurin inhibitors are first-line treatment. For widespread or severe CLE lesions and (or) cases resistant to topical treatment, systemic treatment including antimalarials and (or) short-term corticosteroids can be added. Notably, antimalarials are the first-line systemic treatment for all types of CLE, and can also be used in pregnant patients and pediatric patients. Second-line choices include thalidomide, retinoids, dapsone and MTX, whereas MMF is third-line treatment. Finally, pulsed-dye laser or surgery can be added as fourth-line treatment for localized, refractory lesions of CCLE in cosmetically unacceptable areas, whereas belimumab may be used as fourth-line treatment for widespread CLE lesions in patients with active SLE, or recurrence of ACLE during tapering of corticosteroids. As for management of the disease, patient education and a long-term follow-up are necessary. Disease activity, damage of skin and other organs, quality of life, comorbidities and possible adverse events are suggested to be assessed in every follow-up visit, when appropriate.