Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 300(8): 107554, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002667

RESUMEN

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, also exhibits nuclear genomic localization and is involved in DNA damage signaling. In this study, we investigated the impact of cGAS crotonylation on the regulation of the DNA damage response, particularly homologous recombination repair, following exposure to ionizing radiation (IR). Lysine 254 of cGAS is constitutively crotonylated by the CREB-binding protein; however, IR-induced DNA damage triggers sirtuin 3 (SIRT3)-mediated decrotonylation. Lysine 254 decrotonylation decreased the DNA-binding affinity of cGAS and inhibited its interaction with PARP1, promoting homologous recombination repair. Moreover, SIRT3 suppression led to homologous recombination repair inhibition and markedly sensitized cancer cells to IR and DNA-damaging chemicals, highlighting SIRT3 as a potential target for cancer therapy. Overall, this study revealed the crucial role of cGAS crotonylation in the DNA damage response. Furthermore, we propose that modulating cGAS and SIRT3 activities could be potential strategies for cancer therapy.

2.
Br J Cancer ; 130(10): 1621-1634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575732

RESUMEN

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Tolerancia a Radiación , Factores de Transcripción p300-CBP , Animales , Femenino , Humanos , Ratones , Proteína Quinasa Activada por ADN/metabolismo , Células HeLa , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/radioterapia , Neoplasias/metabolismo , Neoplasias/genética , Factores de Transcripción p300-CBP/metabolismo , Procesamiento Proteico-Postraduccional , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cephalalgia ; 44(3): 3331024241235193, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501875

RESUMEN

BACKGROUND: The clinical profile of cluster headache may differ among different regions of the world, warranting interest in the data obtained from the initial Chinese Cluster Headache Register Individual Study (CHRIS) for better understanding. METHODS: We conducted a multicenter, prospective, longitudinal cohort study on cluster headache across all 31 provinces of China, aiming to gather clinical characteristics, treatment approaches, imaging, electrophysiological and biological samples. RESULTS: In total 816 patients were enrolled with a male-to-female ratio of 4.33:1. The mean age at consultation was 34.98 ± 9.91 years, and 24.89 ± 9.77 years at onset. Only 2.33% were diagnosed with chronic cluster headache, and 6.99% had a family history of the condition. The most common bout was one to two times per year (45.96%), lasting two weeks to one month (44.00%), and occurring frequently in spring (76.23%) and winter (73.04%). Of these, 68.50% experienced one to two attacks per day, with the majority lasting one to two hours (45.59%). The most common time for attacks was between 9 am and 12 pm (75.86%), followed by 1 am and 3 am (43.48%). Lacrimation (78.80%) was the most predominant autonomic symptom reported. Furthermore, 39.22% of patients experienced a delay of 10 years or more in receiving a correct diagnosis. Only 35.67% and 24.26% of patients received common acute and preventive treatments, respectively. CONCLUSION: Due to differences in ethnicity, genetics and lifestyle conditions, CHRIS has provided valuable baseline data from China. By establishing a dynamic cohort with comprehensive multidimensional data, it aims to advance the management system for cluster headache in China.


Asunto(s)
Cefalalgia Histamínica , Femenino , Humanos , Masculino , China/epidemiología , Cefalalgia Histamínica/diagnóstico , Cefalalgia Histamínica/epidemiología , Cefalalgia Histamínica/terapia , Estudios Longitudinales , Estudios Prospectivos , Adulto
4.
Genes Dis ; 11(5): 101060, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38957707

RESUMEN

Protein lysine crotonylation (Kcr) is one conserved form of posttranslational modifications of proteins, which plays an important role in a series of cellular physiological and pathological processes. Lysine ε-amino groups are the primary sites of such modification, resulting in four-carbon planar lysine crotonylation that is structurally and functionally distinct from the acetylation of these residues. High levels of Kcr modifications have been identified on both histone and non-histone proteins. The present review offers an update on the research progression regarding protein Kcr modifications in biomedical contexts and provides a discussion of the mechanisms whereby Kcr modification governs a range of biological processes. In addition, given the importance of protein Kcr modification in disease onset and progression, the potential viability of Kcr regulators as therapeutic targets is elucidated.

5.
Front Physiol ; 15: 1348811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468701

RESUMEN

Purpose: This research aims to study and compare the effects of moderate-intensity continuous exercise and accumulated exercise with different number of bouts on common carotid arterial stiffness and hemodynamic variables. Methods: Thirty healthy male adults were recruited to complete four trials in a randomized crossover design: no-exercise (CON); continuous exercise (CE, 30-min cycling); accumulated exercise including two or three bouts with 10-min rest intervals (AE15, 2 × 15-min cycling; AE10, 3 × 10-min cycling). The intensity in all the exercise trials was set at 45%-55% heart rate reserve. Blood pressure, right common carotid artery center-line velocity, and arterial inner diameter waveforms were measured at baseline and immediately after exercise (0 min), 10 min, and 20 min. Results: 1) The arterial stiffness index and pressure-strain elastic modulus of the CE and AE15 groups increased significantly at 0 min, arterial diameters decreased in AE15 and AE10, and all indicators recovered at 10 min. 2) The mean blood flow rate and carotid artery center-line velocity increased in all trials at 0 min, and only the mean blood flow rate of AE10 did not recover at 10 min. 3) At 0 min, the blood pressure in all trials was found to be increased, and the wall shear stress and oscillatory shear index of AE10 were different from those in CE and AE15. At 20 min, the blood pressure of AE10 significantly decreased, and the dynamic resistance, pulsatility index, and peripheral resistance of CE partially recovered. Conclusion: There is no significant difference in the acute effects of continuous exercise and accumulated exercise on the arterial stiffness and diameter of the carotid artery. Compared with continuous exercise, accumulated exercise with an increased number of bouts is more effective in increasing cerebral blood supply and blood pressure regulation, and its oscillatory shear index recovers faster. However, the improvement of blood flow resistance in continuous exercise was better than that in accumulated exercise.

6.
Sci Total Environ ; 946: 174246, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955266

RESUMEN

The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.


Asunto(s)
Glucosa , Dinámicas Mitocondriales , Radiación Ionizante , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Células HeLa , Glucosa/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Reprogramación Metabólica
7.
J Food Sci ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042474

RESUMEN

A new style of tofu coagulated through the fermentation of Lactobacillus plantarum SJ-L-1 was produced. L. plantarum SJ-L-1 with a high growth rate and excellent acid production ability was isolated and identified from naturally fermented soy yellow whey. The gene annotation indicated the potential outstanding isoflavone conversion capacity of L. plantarum SJ-L-1. Furthermore, fermentation tofu was prepared using L. plantarum SJ-L-1 and Lactobacillus rhamnosus 1-16 as the starter microbiota. Compared to traditional MgCl2 tofu and fermented soy whey tofu, SJ-L-1 tofu exhibited a slight increase in hardness and better structure uniformity. SJ-L-1 tofu also possessed the highest levels of total isoflavone content (76.33 µg/g) and volatile compounds (561.54 µg/kg) among the four styles of tofu. This research indicated that this new type of tofu coagulated through a combination of heat and fermentation of L. plantarum SJ-L-1 represents a promising candidate for future functional foods.

8.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895216

RESUMEN

Osteosarcoma (OS) is the most common primary pediatric bone malignancy. One promising new therapeutic target is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase responsible for ubiquitination and proteasome degradation of substrate p27, thus driving cellular proliferation. We have shown previously that knockout of Skp2 in an immunocompetent transgenic mouse model of OS improved survival, drove apoptosis, and induced tumor inflammation. Here, we applied single-cell RNA-sequencing (scRNA-seq) to study primary OS tumors derived from Osx-Cre driven conditional knockout of Rb1 and Trp53. We showed that murine OS models recapitulate the tumor heterogeneity and microenvironment complexity observed in patient tumors. We further compared this model with OS models with functional disruption of Skp2: one with Skp2 knockout and the other with the Skp2-p27 interaction disrupted (resulting in p27 overexpression). We found reduction of T cell exhaustion and upregulation of interferon activation, along with evidence of replicative and endoplasmic reticulum-related stress in the Skp2 disruption models, and showed that interferon induction was correlated with improved survival in OS patients. Additionally, our scRNA-seq analysis uncovered decreased activities of metastasis-related gene signatures in the Skp2-disrupted OS, which we validated by observation of a strong reduction in lung metastasis in the Skp2 knockout mice. Finally, we report several potential mechanisms of escape from targeting Skp2 in OS, including upregulation of Myc targets, DNA copy number amplification and overexpression of alternative E3 ligase genes, and potential alternative lineage activation. These mechanistic insights into OS tumor biology and Skp2 function suggest novel targets for new, synergistic therapies, while the data and our comprehensive analysis may serve as a public resource for further big data-driven OS research.

9.
Oncogene ; 43(13): 962-975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355807

RESUMEN

Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Carcinogénesis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Ratones Noqueados , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Microambiente Tumoral
10.
Obes Facts ; 17(3): 286-295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569473

RESUMEN

INTRODUCTION: Medication-overuse headache (MOH) is a secondary chronic headache disorder that occurs in individuals with a pre-existing primary headache disorder, particularly migraine disorder. Obesity is often combined with chronic daily headaches and is considered a risk factor for the transformation of episodic headaches into chronic headaches. However, the association between obesity and MOH among individuals with migraine has rarely been studied. The present study explored the association between body mass index (BMI) and MOH in people living with migraine. METHODS: This cross-sectional study is a secondary analysis of data from the Survey of Fibromyalgia Comorbidity with Headache study. Migraine and MOH were diagnosed using the criteria of the International Classification of Headache Disorders, 3rd Edition. BMI (kg/m2) is calculated by dividing the weight (kg) by the square of the height (m). Multivariable logistic regression analysis was used to evaluate the association between BMI and MOH. RESULTS: A total of 2,251 individuals with migraine were included, of whom 8.7% (195/2,251) had a concomitant MOH. Multivariable logistic regression analysis, adjusted for age, sex, education level, headache duration, pain intensity, headache family history, chronic migraine, depression, anxiety, insomnia, and fibromyalgia, demonstrated there was an association between BMI (odds ratio [OR], 1.05; 95% confidence interval [CI], 1.01-1.11; p = 0.031) and MOH. The results remained when the BMI was transformed into a category. Compared to individuals with Q2 (18.5 kg/m2 ≤ BMI ≤23.9 kg/m2), those with Q4 (BMI ≥28 kg/m2) had an adjusted OR for MOH of 1.81 (95% CI, 1.04-3.17; p = 0.037). In the subgroup analyses, BMI was associated with MOH among aged more than 50 years (OR, 1.13; 95%, 1.03-1.24), less than high school (OR, 1.08; 95%, 1.01-1.15), without depression (OR, 1.06; 95%, 1.01-1.12), and without anxiety (OR, 1.06; 95%, 1.01-1.12). An association between BMI and MOH was found in a sensitivity analysis that BMI was classified into four categories according to the World Health Organization guidelines. CONCLUSION: In this cross-sectional study, BMI was associated with MOH in Chinese individuals with migraine.


Asunto(s)
Índice de Masa Corporal , Cefaleas Secundarias , Trastornos Migrañosos , Obesidad , Humanos , Estudios Transversales , Trastornos Migrañosos/complicaciones , Trastornos Migrañosos/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/epidemiología , Cefaleas Secundarias/epidemiología , Factores de Riesgo , Comorbilidad , Modelos Logísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA