Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Connect Tissue Res ; 65(1): 1-15, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38166507

RESUMEN

PURPOSE/AIM OF THE STUDY: To summarize and discuss macrophage properties and their roles and mechanisms in the process of osseointegration in a comprehensive manner, and to provide theoretical support and research direction for future implant surface modification efforts. MATERIALS AND METHODS: Based on relevant high-quality articles, this article reviews the role of macrophages in various stages of osseointegration and methods of implant modification. RESULTS AND CONCLUSIONS: Macrophages not only promote osseointegration through immunomodulation, but also secrete a variety of cytokines, which play a key role in the angiogenic and osteogenic phases of osseointegration. There is no "good" or "bad" difference between the M1 and M2 phenotypes of macrophages, but their timely presence and sequential switching play a crucial role in implant osseointegration. In the implant surface modification strategy, the induction of sequential activation of the M1 and M2 phenotypes of macrophages is a brighter prospect for implant surface modification than inducing the polarization of macrophages to the M1 or M2 phenotypes individually, which is a promising pathway to enhance the effect of osseointegration and increase the success rate of implant surgery.


Asunto(s)
Macrófagos , Oseointegración , Macrófagos/metabolismo , Citocinas/metabolismo , Prótesis e Implantes , Osteogénesis , Titanio/metabolismo , Propiedades de Superficie
2.
Acta Pharmacol Sin ; 45(7): 1477-1491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38538716

RESUMEN

Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina , Diabetes Mellitus Experimental , Transducción de Señal , Cicatrización de Heridas , Quinasas Asociadas a rho , Animales , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Cicatrización de Heridas/efectos de los fármacos , Humanos , Diabetes Mellitus Experimental/metabolismo , Masculino , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Femenino
3.
Skin Res Technol ; 30(7): e13856, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031924

RESUMEN

BACKGROUND: Fractional picosecond lasers (FPL) are reported to be effective and safe for atrophic acne scars and post-acne erythema. However, there is no evidence regarding the effectiveness and safety of FPL treatment for non-acne atrophic scars and scar erythema among Chinese patients. METHODS: In this retrospective study, 12 Chinese patients with non-acne atrophic scars, including nine with scar erythema, were treated with one to three sessions of 1064 nm FPL treatment. Clinical improvement was objectively assessed through blinded evaluations by external physicians. A modified Manchester Scar Scale (mMSS) and the Clinician Erythema Assessment Scale (CEAS) were individually used to evaluate atrophic scars and scar erythema based on photographs. Physician-assessed and subject-assessed Global Aesthetic Improvement Scale (GAIS) were used to assess changes before and after FPL treatment. Patient satisfaction and adverse events were also documented. RESULTS: Total mMSS scores, as well as three parameters (color, distortion, and texture), were significantly decreased after FPL treatment, with a mean reduction of 3.18 ± 1.60 in total scores (p < 0.05). The CEAS scores were significantly reduced from 2.41 ± 0.98 before treatment to 0.41 ± 0.40 at the final visit (p < 0.05). Based on physician-assessed and subject-assessed GAIS scores, 11 (91.7%) patients were improved after FPL treatment. 33.3% of patients were very satisfied, and 41.7% were satisfied. No serious, prolonged (> 3 weeks) adverse events were observed. CONCLUSION: Our study suggests that 1064 nm FPL treatment may be a promising option for non-acne atrophic scars, especially with scar erythema. Further studies are needed to confirm our results.


Asunto(s)
Cicatriz , Eritema , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Atrofia , China , Cicatriz/patología , Pueblos del Este de Asia , Eritema/etiología , Eritema/patología , Eritema/radioterapia , Terapia por Láser/métodos , Láseres de Estado Sólido/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Satisfacción del Paciente , Estudios Retrospectivos , Resultado del Tratamiento
4.
Mol Cell ; 59(2): 143-5, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186288

RESUMEN

Although proteasomes are critical in cell regulation and cancer therapy, little is known about the factors regulating proteasome content or activity. In this issue, Zhang et al. (2015) report that miR-101 suppresses the expression of chaperone POMP and 20S assembly, and certain cancers raise proteasome content by losing miR-101.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Inhibidores de Proteasoma/metabolismo , Animales , Femenino , Humanos
5.
Anal Chem ; 94(41): 14185-14194, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36190014

RESUMEN

The excited-state lifetime is an intrinsic property of fluorescent molecules that can be leveraged for multiplexed imaging. An advantage of fluorescence lifetime-based multiplexing is that signals from multiple probes can be gathered simultaneously, whereas traditional spectral fluorescence imaging typically requires multiple images at different excitation and emission wavelengths. Additionally, lifetime and spectra could both be utilized to expand the multiplexing capacity of fluorescence. However, resolving exogenous molecular probes based exclusively on the fluorescence lifetime has been limited by technical challenges in analyzing lifetime data. The phasor approach to lifetime analysis offers a simple, graphical solution that has increasingly been used to assess endogenous cellular autofluorescence to quantify metabolic factors. In this study, we employed the phasor analysis of FLIM to quantitatively resolve three exogenous, antibody-targeted fluorescent probes with similar spectral properties based on lifetime information alone. First, we demonstrated that three biomarkers that were spatially restricted to the cell membrane, cytosol, or nucleus could be accurately distinguished using FLIM and phasor analysis. Next, we successfully resolved and quantified three probes that were all targeted to cell surface biomarkers. Finally, we demonstrated that lifetime-based quantitation accuracy can be improved through intensity matching of various probe-biomarker combinations, which will expand the utility of this technique. Importantly, we reconstructed images for each individual probe, as well as an overlay of all three probes, from a single FLIM image. Our results demonstrate that FLIM and phasor analysis can be leveraged as a powerful tool for simultaneous detection of multiple biomarkers with high sensitivity and accuracy.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Microscopía Fluorescente/métodos , Imagen Molecular , Sondas Moleculares
6.
Proc Natl Acad Sci U S A ; 116(10): 4228-4237, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782827

RESUMEN

Pharmacological agents that raise cAMP and activate protein kinase A (PKA) stimulate 26S proteasome activity, phosphorylation of subunit Rpn6, and intracellular degradation of misfolded proteins. We investigated whether a similar proteasome activation occurs in response to hormones and under various physiological conditions that raise cAMP. Treatment of mouse hepatocytes with glucagon, epinephrine, or forskolin stimulated Rpn6 phosphorylation and the 26S proteasomes' capacity to degrade ubiquitinated proteins and peptides. These agents promoted the selective degradation of short-lived proteins, which are misfolded and regulatory proteins, but not the bulk of cell proteins or lysosomal proteolysis. Proteasome activities and Rpn6 phosphorylation increased similarly in working hearts upon epinephrine treatment, in skeletal muscles of exercising humans, and in electrically stimulated rat muscles. In WT mouse kidney cells, but not in cells lacking PKA, treatment with antidiuretic hormone (vasopressin) stimulated within 5-minutes proteasomal activity, Rpn6 phosphorylation, and the selective degradation of short-lived cell proteins. In livers and muscles of mice fasted for 12-48 hours cAMP levels, Rpn6 phosphorylation, and proteasomal activities increased without any change in proteasomal content. Thus, in vivo cAMP-PKA-mediated proteasome activation is a common cellular response to diverse endocrine stimuli and rapidly enhances the capacity of target tissues to degrade regulatory and misfolded proteins (e.g., proteins damaged upon exercise). The increased destruction of preexistent regulatory proteins may help cells adapt their protein composition to new physiological conditions.


Asunto(s)
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animales , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Epinefrina/farmacología , Glucagón/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Riñón , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Deficiencias en la Proteostasis/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Proteínas Ubiquitinadas/metabolismo
7.
Cytogenet Genome Res ; 161(3-4): 120-131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975305

RESUMEN

In the present study, we retrospectively recruited 340 patients who underwent spontaneous abortions to investigate chromosomal abnormalities of the conception products in the first trimester. We also performed a relevant analysis of clinical factors. Of these patients, 165 had conception products with chromosomal abnormalities, including 135 aneuploidies, 11 triploidies, 10 complex abnormalities, and 9 segmental aneuploidies. The most common abnormal chromosomes were chromosome 16 in the embryo-transfer group and sex chromosomes in the natural-conception group. The most common abnormal chromosomes in all analyzed maternal age groups were sex chromosomes, 16, and 22. The chromosomal abnormality incidence was related to age and number of spontaneous abortions (both p < 0.05), but not to number of pregnancies, deliveries, induced abortions, or methods of conception (all p > 0.05). The rates of abnormality for chromosomes 12, 15, 20, and 22 increased with age, while the rates for chromosomes 6, 7, 13, and X decreased. In all age groups, aneuploidy was by far the most common abnormality; however, the low-incidence distributions of chromosomal abnormalities were entirely different. Overall, chromosomal aneuploidy was the primary cause of pregnancy loss in the first trimester, and low-frequency abnormalities differed across age subgroups. Chromosomal aberrations were found to be related to maternal age and spontaneous abortion, but not all chromosomal abnormalities increased with age.


Asunto(s)
Aborto Espontáneo/genética , Aneuploidia , Aberraciones Cromosómicas , Trastornos de los Cromosomas/genética , Análisis Citogenético/métodos , Primer Trimestre del Embarazo/genética , Adulto , Femenino , Fertilización/genética , Humanos , Edad Materna , Monosomía , Embarazo , Estudios Retrospectivos , Triploidía , Trisomía , Adulto Joven
8.
J Periodontal Res ; 56(5): 837-847, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34173676

RESUMEN

Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.


Asunto(s)
Curcumina , Periodontitis , Animales , Antiinflamatorios/uso terapéutico , Curcumina/uso terapéutico , Raspado Dental , Periodontitis/tratamiento farmacológico , Aplanamiento de la Raíz
9.
Proc Natl Acad Sci U S A ; 115(12): E2725-E2733, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507213

RESUMEN

The dentate gyrus (DG) of the hippocampus is a laminated brain region in which neurogenesis begins during early embryonic development and continues until adulthood. Recent studies have implicated that defects in the neurogenesis of the DG seem to be involved in the genesis of autism spectrum disorders (ASD)-like behaviors. Liver X receptor ß (LXRß) has recently emerged as an important transcription factor involved in the development of laminated CNS structures, but little is known about its role in the development of the DG. Here, we show that deletion of the LXRß in mice causes hypoplasia in the DG, including abnormalities in the formation of progenitor cells and granule cell differentiation. We also found that expression of Notch1, a central mediator of progenitor cell self-renewal, is reduced in LXRß-null mice. In addition, LXRß deletion in mice results in autistic-like behaviors, including abnormal social interaction and repetitive behavior. These data reveal a central role for LXRß in orchestrating the timely differentiation of neural progenitor cells within the DG, thereby providing a likely explanation for its association with the genesis of autism-related behaviors in LXRß-deficient mice.


Asunto(s)
Trastorno Autístico/etiología , Giro Dentado/crecimiento & desarrollo , Receptores X del Hígado/metabolismo , Neuronas/patología , Animales , Trastorno Autístico/genética , Conducta Animal/fisiología , Diferenciación Celular , Proliferación Celular/genética , Giro Dentado/citología , Giro Dentado/metabolismo , Proteína de Unión a los Ácidos Grasos 7/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Receptores X del Hígado/genética , Masculino , Ratones Noqueados , Neuroglía/citología , Neuronas/fisiología , Receptor Notch1/metabolismo , Células Madre/citología , Células Madre/fisiología
10.
Org Biomol Chem ; 17(36): 8358-8363, 2019 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-31465083

RESUMEN

A palladium-catalyzed cascade reaction of alkene-tethered carbamoyl chlorides with N-tosyl hydrazones is described. It provided a new way to synthesize various alkene-functionalized oxindoles bearing an all-carbon quaternary center. The olefin moieties could serve as versatile handles for further elaboration. This transformation was highly efficient and showed good functional group tolerance.

11.
Arch Virol ; 164(2): 579-584, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30417198

RESUMEN

Ferret badger (FB, Melogale moschata) rabies is an increasing public health threat to humans, with FBs being a major reservoir and vector of rabies in China. Based on 152 published nucleotide sequences of the FB rabies virus (RABV) nucleoprotein, phylogenetic analysis revealed them to be clustered into six FB-related lineages, FB-I to FB-VI. The genetic features of members of lineage FB-VI suggest that cross-species transmission occurs between FBs and dogs. Here, we describe the phylogenetic relationships between FB-RABVs, their geographic segregation, and their evolutionary dynamics in epizootic regions.


Asunto(s)
Enfermedades de los Perros/virología , Hurones/virología , Virus de la Rabia/aislamiento & purificación , Rabia/veterinaria , Rabia/virología , Animales , China , Enfermedades de los Perros/transmisión , Perros , Humanos , Filogenia , Virus de la Rabia/clasificación , Virus de la Rabia/genética , Virus de la Rabia/fisiología , Taiwán
12.
Biomed Eng Online ; 17(1): 88, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925387

RESUMEN

BACKGROUND: Minocycline has been widely used in central nervous system disease. However, the effect of minocycline on the repairing of nerve fibers around dental implants had not been previously investigated. The aim of the present study was to evaluate the possibility of using minocycline for the repairing of nerve fibers around dental implants by investigating the effect of minocycline on the proliferation of Schwann cells and secretion of neurotrophic factors nerve growth factor and glial cell line-derived neurotrophic factor in vitro. METHODS: TiO2 nanotubes were fabricated on the surface of pure titanium via anodization at the voltage of 20, 30, 40 and 50 V. The nanotubes structure were characterized by scanning electron microscopy and examined with an optical contact angle. Then drug loading capability and release behavior were detected in vitro. The TiO2 nanotubes loaded with different concentration of minocycline were used to produce conditioned media with which to treat the Schwann cells. A cell counting kit-8 assay and cell viability were both selected to study the proliferative effect of the specimens on Schwann cell. Reverse transcription-quantitative PCR and western blot analyses were used to detect the related gene/protein expression of Schwann cells. RESULTS: The results showed that the diameter of TiO2 nanotubes at different voltage varied from 100 to 200 nm. The results of optical contact angle and releasing profile showed the nanotubes fabricated at the voltage of 30 V met the needs of the carrier of minocycline. In addition, the TiO2 nanotubes loaded with the concentration of 20 µg/mL minocycline increased Schwann cells proliferation and secretion of neurotrophic factors in vitro. CONCLUSIONS: The results suggested that the surface functionalization of TiO2 nanotubes with minocycline was a promising candidate biomaterial for the peripheral nerve regeneration around dental implants and has potential to be applied in improving the osseoperception of dental implant.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Minociclina/química , Nanotubos/química , Células de Schwann/efectos de los fármacos , Titanio/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células de Schwann/citología , Células de Schwann/metabolismo , Propiedades de Superficie
13.
Proc Natl Acad Sci U S A ; 112(52): 15790-7, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26669439

RESUMEN

Growth factors and nutrients enhance protein synthesis and suppress overall protein degradation by activating the protein kinase mammalian target of rapamycin (mTOR). Conversely, nutrient or serum deprivation inhibits mTOR and stimulates protein breakdown by inducing autophagy, which provides the starved cells with amino acids for protein synthesis and energy production. However, it is unclear whether proteolysis by the ubiquitin proteasome system (UPS), which catalyzes most protein degradation in mammalian cells, also increases when mTOR activity decreases. Here we show that inhibiting mTOR with rapamycin or Torin1 rapidly increases the degradation of long-lived cell proteins, but not short-lived ones, by stimulating proteolysis by proteasomes, in addition to autophagy. This enhanced proteasomal degradation required protein ubiquitination, and within 30 min after mTOR inhibition, the cellular content of K48-linked ubiquitinated proteins increased without any change in proteasome content or activity. This rapid increase in UPS-mediated proteolysis continued for many hours and resulted primarily from inhibition of mTORC1 (not mTORC2), but did not require new protein synthesis or key mTOR targets: S6Ks, 4E-BPs, or Ulks. These findings do not support the recent report that mTORC1 inhibition reduces proteolysis by suppressing proteasome expression [Zhang Y, et al. (2014) Nature 513(7518):440-443]. Several growth-related proteins were identified that were ubiquitinated and degraded more rapidly after mTOR inhibition, including HMG-CoA synthase, whose enhanced degradation probably limits cholesterol biosynthesis upon insulin deficiency. Thus, mTOR inhibition coordinately activates the UPS and autophagy, which provide essential amino acids and, together with the enhanced ubiquitination of anabolic proteins, help slow growth.


Asunto(s)
Autofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ubiquitina/metabolismo , Animales , Western Blotting , Células Cultivadas , Células HEK293 , Humanos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Inmunosupresores/farmacología , Naftiridinas/farmacología , Proteolisis/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Ubiquitinación/efectos de los fármacos
15.
Biochim Biophys Acta ; 1852(7): 1298-310, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25817400

RESUMEN

Ethanol (EtOH) exposure during early postnatal life triggers obvious neurotoxic effects on the developing hippocampus and results in long-term effects on hippocampal neurogenesis. Resveratrol (RSV) has been demonstrated to exert potential neuroprotective effects by promoting hippocampal neurogenesis. However, the effects of RSV on the EtOH-mediated impairment of hippocampal neurogenesis remain undetermined. Thus, mice were pretreated with RSV and were later exposed to EtOH to evaluate its protective effects on EtOH-mediated toxicity during hippocampal development. The results indicated that a brief exposure of EtOH on postnatal day 7 resulted in a significant impairment in hippocampal neurogenesis and a depletion of hippocampal neural precursor cells (NPCs). This effect was attenuated by pretreatment with RSV. Furthermore, EtOH exposure resulted in a reduction in spine density on the granular neurons of the dentate gyrus (DG), and the spines exhibited a less mature morphological phenotype characterized by a higher proportion of stubby spines and a lower proportion of mushroom spines. However, RSV treatment effectively reversed these responses. We further confirmed that RSV treatment reversed the EtOH-induced down-regulation of hippocampal pERK and Hes1 protein levels, which may be related to the proliferation and maintenance of NPCs. Furthermore, EtOH exposure in the C17.2 NPCs also diminished cell proliferation and activated apoptosis, which could be reversed by pretreatment of RSV. Overall, our results suggest that RSV pretreatment protects against EtOH-induced defects in neurogenesis in postnatal mice and may thus play a critical role in preventing EtOH-mediated toxicity in the developing hippocampus.


Asunto(s)
Etanol/toxicidad , Hipocampo/efectos de los fármacos , Neurogénesis , Fármacos Neuroprotectores/farmacología , Estilbenos/farmacología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Resveratrol , Factor de Transcripción HES-1
16.
J Mater Sci Mater Med ; 27(5): 82, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26968757

RESUMEN

In this study, two types of magnesium alloys (WE43 and Mg3Gd) were compared with Heal-All membrane (a biodegradable membrane used in guided bone regeneration) in vitro to determine whether the alloys could be used as biodegradable membranes. Degradation behavior was assessed using immersion testing with simulated body fluid (SBF). Microstructural characteristics before and after immersion were evaluated through scanning electron microscopy, and degradation products were analyzed with energy dispersive spectrometry (EDS). To evaluate the biocompatibility of the three types of materials, we performed cytotoxicity, adhesion, and mineralization tests using human osteoblast-like MG63 cells. Immersion testing results showed no significant difference in degradation rate between WE43 and Mg3Gd alloys. However, both Mg alloys corroded faster than the Heal-All membrane, with pitting corrosion as the main corrosion mode for the alloys. Degradation products mainly included P- and Ca-containing apatites on the surface of WE43 and Mg3Gd, whereas these apatites were rarely detected on the surface of the Heal-All membrane. All three type of materials exhibited good biocompatibility. In the mineralization experiment, the alkaline phosphatase (ALP) activity of 10 % Mg3Gd extract was significantly higher than the extracts of the two other materials and the negative control. This study highlighted the potential of these Mg-REE alloys for uses in bone regeneration and further studies and refinements are obviously required.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles , Compuestos de Magnesio/química , Fosfatasa Alcalina , Adhesión Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Humanos , Membranas Artificiales , Microscopía Electrónica de Rastreo , Osteoblastos/fisiología , Estrés Mecánico , Propiedades de Superficie
17.
J Mater Sci Mater Med ; 27(9): 139, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27534399

RESUMEN

This study aimed to evaluate the effects of Ti-Nb-Zr-Ta-Si alloy implants on mineral apposition rate and new BIC contact in rabbits. Twelve Ti-Nb-Zr-Ta-Si alloy implants were fabricated and placed into the right femur sites in six rabbits, and commercially pure titanium implants were used as controls in the left femur. Tetracycline and alizarin red were administered 3 weeks and 1 week before euthanization, respectively. At 4 weeks and 8 weeks after implantation, animals were euthanized, respectively. Surface characterization and implant-bone contact surface analysis were performed by using a scanning electron microscope and an energy dispersive X-ray detector. Mineral apposition rate was evaluated using a confocal laser scanning microscope. Toluidine blue staining was performed on undecalcified sections for histology and histomorphology evaluation. Scanning electron microscope and histomorphology observation revealed a direct contact between implants and bone of all groups. After a healing period of 4 weeks, Ti-Nb-Zr-Ta-Si alloy implants showed significantly higher mineral apposition rate compared to commercially pure titanium implants (P < 0.05), whereas there was no significant difference between Ti-Nb-Zr-Ta-Si alloy implants and commercially pure titanium implants (P > 0.05) at 8 weeks. No significant difference of bone-to-implant contact was observed between Ti-Nb-Zr-Ta-Si alloy implants and commercially pure titanium implants implants after a healing period of 4 weeks and 8 weeks. This study showed that Ti-Nb-Zr-Ta-Si alloy implants could establish a close direct contact comparedto commercially pure titanium implants implants, improved mineral matrix apposition rate, and may someday be an alternative as a material for dental implants.


Asunto(s)
Implantes Dentales , Niobio/química , Oseointegración/efectos de los fármacos , Silicio/química , Tantalio/química , Titanio/química , Circonio/química , Aleaciones , Animales , Antraquinonas/administración & dosificación , Fémur , Implantes Experimentales , Microscopía Confocal , Microscopía Electrónica de Rastreo , Conejos , Propiedades de Superficie , Tetraciclina/administración & dosificación , Rayos X
19.
Exp Eye Res ; 135: 47-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25912193

RESUMEN

Besides the cognitive impairment and degeneration in the brain, vision dysfunction and retina damage are always prevalent in patients with Alzheimer's disease (AD). The uncompetitive antagonist of the N-methyl-d-aspartate receptor, memantine (MEM), has been proven to improve the cognition of patients with AD. However, limited information exists regarding the mechanism of neurodegeneration and the possible neuroprotective mechanisms of MEM on the retinas of patients with AD. In the present study, by using APPswe/PS1ΔE9 double transgenic (dtg) mice, we found that MEM rescued the loss of retinal ganglion cells (RGCs), as well as improved visual impairments, including improving the P50 component in pattern electroretinograms and the latency delay of the P2 component in flash visual evoked potentials of APPswe/PS1ΔE9 dtg mice. The activated microglia in the retinas of APPswe/PS1ΔE9 dtg mice were also inhibited by MEM. Additionally, the level of glutamine synthetase expressed by Müller cells within the RGC layer was upregulated in APPswe/PS1ΔE9 dtg mice, which was inhibited by MEM. Simultaneously, MEM also reduced the apoptosis of choline acetyl transferase-immunoreactive cholinergic amacrine cells within the RGC layer of AD mice. Moreover, the phosphorylation level of extracellular regulated protein kinases 1 and 2 was increased in APPswe/PS1ΔE9 dtg mice, which was blocked by MEM treatment. These findings suggest that MEM protects RGCs in the retinas of APPswe/PS1ΔE9 dtg mice by modulating the immune response of microglia and the adapted response of Müller cells, making MEM a potential ophthalmic treatment alternative in patients with AD.


Asunto(s)
Memantina/farmacología , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/farmacología , Células Ganglionares de la Retina/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Electrorretinografía/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Potenciales Evocados Visuales/efectos de los fármacos , Glutamato-Amoníaco Ligasa/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Fosforilación , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/enzimología
20.
Arch Virol ; 160(7): 1797-800, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25976558

RESUMEN

We describe the isolation and complete genome sequence of a new calicivirus, FBCV-JX12, isolated from a ferret badger (Melogale moschata). Comparison of FBCV-JX12 with other vesiviruses revealed that it shared the highest amino acid sequence identities of 71.6, 60.5, and 59.3% in the nonstructural protein, VP1, and VP2, respectively, with MCV-DL2007 (mink calicivirus). Phylogenetic analysis of the whole genomic sequence showed that it clustered most closely with MCV-DL2007 of the genus Vesivirus, but with low nucleotide similarity in the three open reading frames (62.1-68.5%).


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Caliciviridae/clasificación , Caliciviridae/aislamiento & purificación , Hurones/virología , Animales , Secuencia de Bases , Caliciviridae/genética , Infecciones por Caliciviridae/virología , China , Genoma Viral , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA