Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Small ; : e2403000, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923124

RESUMEN

Negative thermal expansion (NTE) compounds provide a solution for the mismatch of coefficients of thermal expansion in highly integrated device design. However, the current NTE compounds are rare, and how to effectively design new NTE compounds is still challenging. Here, a new concept is proposed to design NTE compounds, that is, to increase the flexibility of framework structure by expanding the space in framework structure compounds. Taking the parent compound NaZr2(PO4)3 as a case, a new NTE system AIBIICIII(MoO4)3 (A = Li, Na, K, and Rb; B = Mg and Mn; C = Sc, In, and Lu) is designed. In these compounds, the large volume of MoO4 tetrahedron is used to replace the small volume of PO4 tetrahedron in NaZr2(PO4)3 to enhance structural space and NTE performance. Simultaneously, a joint study of temperature-dependent X-ray diffraction, Raman spectroscopy, and the first principles calculation reveals that the NTE in AIBIICIII(MoO4)3 series compounds arise from the coupled oscillation of polyhedral. Large-radius ions are conducive to enhancing the space and softening the framework structure to achieve the enhancement of NTE. The current strategy for designing NTE compounds is expected to be adopted in other compounds to obtain more NTE compounds.

2.
Brain Behav Immun ; 118: 31-48, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360375

RESUMEN

Microglia-mediated neuroinflammation plays a critical role in the occurrence and progression of Alzheimer's disease (AD). In recent years, studies have increasingly explored microRNAs as biomarkers and treatment interventions for AD. This study identified a novel microRNA termed miR-25802 from our high-throughput sequencing dataset of an AD model and explored its role and the underlying mechanism. The results confirmed the miRNA properties of miR-25802 based on bioinformatics and experimental verification. Expression of miR-25802 was increased in the plasma of AD patients and in the hippocampus of APP/PS1 and 5 × FAD mice carrying two and five familial AD gene mutations. Functional studies suggested that overexpression or inhibition of miR-25802 respectively aggravated or ameliorated AD-related pathology, including cognitive disability, Aß deposition, microglial pro-inflammatory phenotype activation, and neuroinflammation, in 5 × FAD mice and homeostatic or LPS/IFN-γ-stimulated EOC20 microglia. Mechanistically, miR-25802 negatively regulates KLF4 by directly binding to KLF4 mRNA, thus stimulating microglia polarization toward the pro-inflammatory M1 phenotype by promoting the NF-κB-mediated inflammatory response. The results also showed that inhibition of miR-25802 increased microglial anti-inflammatory M2 phenotype activity and suppressed NF-κB-mediated inflammatory reactions in the brains of 5 × FAD mice, while overexpression of miR-25802 exacerbated microglial pro-inflammatory M1 activity by enhancing NF-κB pathways. Of note, AD-associated manifestations induced by inhibition or overexpression of miR-25802 via the NF-κB signaling pathway were reversed by KLF4 silencing or upregulation. Collectively, these results provide the first evidence that miR-25802 is a regulator of microglial activity and establish the role of miR-25802/KLF4/NF-κB signaling in microglia-mediated neuroinflammation, suggesting potential therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Transducción de Señal/fisiología , MicroARNs/genética , MicroARNs/metabolismo
3.
Sensors (Basel) ; 23(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050832

RESUMEN

To solve the problem of low accuracy of pavement crack detection caused by natural environment interference, this paper designed a lightweight detection framework named PCDETR (Pavement Crack DEtection TRansformer) network, based on the fusion of the convolution features with the sequence features and proposed an efficient pavement crack detection method. Firstly, the scalable Swin-Transformer network and the residual network are used as two parallel channels of the backbone network to extract the long-sequence global features and the underlying visual local features of the pavement cracks, respectively, which are concatenated and fused to enrich the extracted feature information. Then, the encoder and decoder of the transformer detection framework are optimized; the location and category information of the pavement cracks can be obtained directly using the set prediction, which provided a low-code method to reduce the implementation complexity. The research result shows that the highest AP (Average Precision) of this method reaches 45.8% on the COCO dataset, which is significantly higher than that of DETR and its variants model Conditional DETR where the AP values are 36.9% and 42.8%, respectively. On the self-collected pavement crack dataset, the AP of the proposed method reaches 45.6%, which is 3.8% higher than that of Mask R-CNN (Region-based Convolution Neural Network) and 8.8% higher than that of Faster R-CNN. Therefore, this method is an efficient pavement crack detection algorithm.

4.
Angew Chem Int Ed Engl ; 62(41): e202308335, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37604792

RESUMEN

Performance of electrocatalytic reactions depends on not only the composition and structure of the active sites, but also their local environment, including the surrounding electrolyte. In this work, we demonstrate that BF2 (OH)2 - anion is the key fluoroborate species formed in the mixed KBi/KF (KBi=potassium borate) electrolyte to enhance the rate of the oxygen evolution reaction (OER) at near-neutral pH. Through a combination of electrokinetic and in situ spectroscopic studies, we show that the mixed KBi/KF electrolyte promotes the OER via two pathways: 1) stabilizing the interfacial pH during the proton-producing reaction with its high buffering capacity; and 2) activating the interfacial water via strong hydrogen bonds with F-containing species. With the KBi/KF electrolyte, electrodeposited Co(OH)2 is able to achieve 100 mA/cm2 at 1.74 V, which is among the highest reported activities with earth-abundant electrocatalysts at near neutral conditions. These findings highlight the potential of leveraging electrolyte-engineering for improving the electrochemical performance of the OER.

5.
Pharmacol Res ; 178: 106153, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257899

RESUMEN

Alzheimer's disease (AD) pathogenesis is known to involve a dysregulation of microRNA expression, and these intricate transcriptional cascades between multiple pathological manifestations affect brain homeostasis. Previous studies have revealed that miR-30a-5p participates in neuronal damage and is upregulated in amyloid beta-peptide (Aß)-induced models. However, its involvement in cognition dysfunction and the AD pathogenic process remains unclear. In the present study, we investigated the mechanisms underlying miR-30a-5p involvement in AD, and its potential as a therapeutic target. Our results reveal that miR-30a-5p was substantially upregulated during the pathological progression of AD, presenting as an increased level in the cortex and hippocampus of APP/PS1 and five familial AD mice, AD cells, and the plasma of AD patients. miR-30a-5p overexpression also induced neuronal injury and apoptosis in AD cells. Mechanistically, miR-30a-5p negatively regulated ADAM10 and SIRT1 by directly binding to their 3'-untranslated regions. A possible association between SIRT1 and ADAM10 was observed via their rescue of miR-30a-5p-induced RARß downregulation. Interestingly, miR-30a-5p was observed to inhibit the nonamyloidogenic pathway by down regulating ADAM10 and SIRT1, thus promoting Aß1-42 overproduction. In APP/PS1 mice, knockdown of miR-30a-5p ameliorated cognitive dysfunctions and neurodegenerative changes, suppressed Aß accumulation, and inhibited Aß1-42 generation by enhancing the nonamyloidogenic pathway via upregulation of ADAM10 and SIRT1. However, these improvements were blocked by ADAM10 and SIRT1 silencing. In conclusion, the present study implicates dysregulation of the miR-30a-5p/ ADAM10/ SIRT1 pathway as a critical mediator of AD pathogenesis, highlighting the importance of epigenetics and identifying novel therapeutic targets in the nonamyloidogenic pathway.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , MicroARNs , Regiones no Traducidas 3' , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
6.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955632

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by cognitive dysfunction. The role of long non-coding RNAs (lncRNAs) with the action of competitive endogenous RNA (ceRNA) in AD remains unclear. The present study aimed to identify significantly differentially expressed lncRNAs (SDELs) and establish lncRNA-associated ceRNA networks via RNA sequencing analysis and a quantitative real-time Polymerase Chain Reaction (qPCR) assay using transgenic mice with five familial AD mutations. A total of 53 SDELs in the cortex and 51 SDELs in the hippocampus were identified, including seven core SDELs common to both regions. The functions and pathways were then investigated through the potential target genes of SDELs via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, which indicate biological effects, action distributions, and pathological transductions associated with AD. Based on the ceRNA hypothesis, integrated ceRNA networks in the cortex and hippocampus of lncRNA-miRNA-mRNA were constructed. The core SDEL-mediated ceRNA relationship was established and the expression of these RNAs was verified by qPCR. The results identified lncRNA ENSMUST00000127786 and highlighted miRNAs and mRNAs as potential key mediators in AD. These findings provide AD-derived lncRNA-mediated ceRNA profiles, and further experimental evidence is needed to confirm these identified ceRNA regulatory relationships.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , ARN Largo no Codificante , Enfermedad de Alzheimer/genética , Animales , Redes Reguladoras de Genes , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética
7.
Angew Chem Int Ed Engl ; 61(39): e202207197, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35941760

RESUMEN

Developing efficient catalytic systems for the hydrogen oxidation and evolution reactions (HOR/HER) is essential in the world's transition to renewable energy. There is a growing recognition that the HOR/HER activity depends on properties of the electrochemical interface, rather than just the composition and structure of the catalyst. Herein, we demonstrate that specifically adsorbed organic additives (theophylline derivatives) could enhance the intrinsic HOR/HER activity in base on polycrystalline Pt by up to a factor of 3 via introducing weakly hydrogen-bonded water, as confirmed by in situ surface enhanced infrared and Raman spectroscopies. Optimal HOR/HER activity is achieved on a 7-n-butyltheophylline decorated Pt surface, which sufficiently disrupts the hydrogen bonding network in the double layer without depleting the interfacial water. This work demonstrates the promise of electrochemical interfacial engineering as a strategy to boost electrocatalytic performance.


Asunto(s)
Platino (Metal) , Teofilina , Hidrógeno/química , Enlace de Hidrógeno , Cinética , Platino (Metal)/química , Agua
8.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143333

RESUMEN

An Ag/AgCl electrode used as a corrosion sensor in a reinforced concrete structure isconsidered as having good application prospect. However, its performance under complexconditions, such as dry-wet cycle condition, is not affirmed. In the current study, the performanceof Ag/AgCl as chloride selective electrode in mortar exposed to dry-wet cycle condition wasinvestigated. A simple Ag/AgCl electrode was prepared and fabricated by electrochemicalanodization. These Ag/AgCl electrodes were embedded into a mortar specimen with temperaturesensors, humidity sensors and anode ladder monitoring system (ALS). After 28 d curing time, theupper surface of mortar specimen was wetted (with 5% NaCl solution) and dried regularly. Theobtained results indicate that Ag/AgCl electrode responds to the ingress of chloride ion, sensitively.The chloride ion concentration variation can be reflected by the potential trend. Furthermore, thebalance potential of Ag/AgCl electrodes is influenced by dry-wet cycles. Compared with ALS, itdemonstrates that Ag/AgCl electrodes are more sensitive to chloride. The research provides the keyelement for the specific application of Ag/AgCl electrode for corrosion monitoring in the future.

9.
Nat Commun ; 15(1): 1720, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409270

RESUMEN

Efficient oxygen evolution reaction electrocatalysts are essential for sustainable clean energy conversion. However, catalytic materials followed the conventional adsorbate evolution mechanism (AEM) with the inherent scaling relationship between key oxygen intermediates *OOH and *OH, or the lattice-oxygen-mediated mechanism (LOM) with the possible lattice oxygen migration and structural reconstruction, which are not favorable to the balance between high activity and stability. Herein, we propose an unconventional Co-Fe dual-site segmentally synergistic mechanism (DSSM) for single-domain ferromagnetic catalyst CoFeSx nanoclusters on carbon nanotubes (CNT) (CFS-ACs/CNT), which can effectively break the scaling relationship without sacrificing stability. Co3+ (L.S, t2g6eg0) supplies the strongest OH* adsorption energy, while Fe3+ (M.S, t2g4eg1) exposes strong O* adsorption. These dual-sites synergistically produce of Co-O-O-Fe intermediates, thereby accelerating the release of triplet-state oxygen ( ↑ O = O ↑ ). As predicted, the prepared CFS-ACs/CNT catalyst exhibits less overpotential than that of commercial IrO2, as well as approximately 633 h of stability without significant potential loss.

10.
Front Pharmacol ; 14: 1123188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937876

RESUMEN

Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.

11.
Chem Sci ; 14(40): 11076-11087, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37860648

RESUMEN

Engineering efficient electrode-electrolyte interfaces for the hydrogen evolution and oxidation reactions (HOR/HER) is central to the growing hydrogen economy. Existing descriptors for HOR/HER catalysts focused on species that could directly impact the immediate micro-environment of surface-mediated reactions, such as the binding energies of adsorbates. In this work, we demonstrate that bulky organic cations, such as tetrapropyl ammonium, are able to induce a long-range structure of interfacial water molecules and enhance the HOR/HER kinetics even though they are located outside the outer Helmholtz plane. Through a combination of electrokinetic analysis, molecular dynamics and in situ spectroscopic investigations, we propose that the structure-making ability of bulky hydrophobic cations promotes the formation of hydrogen-bonded water chains connecting the electrode surface to the bulk electrolyte. In alkaline electrolytes, the HOR/HER involve the activation of interfacial water by donating or abstracting protons. The structural diffusion mechanism of protons in aqueous electrolytes enables water molecules and cations located at a distance from the electrode to influence surface-mediated reactions. The findings reported in this work highlight the prospect of leveraging the nonlocal mechanism to enhance electrocatalytic performance.

12.
Front Immunol ; 14: 1118808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153565

RESUMEN

Introduction: Although vascular dementia (VaD) is the second most prevalent form of dementia, there is currently a lack of effective treatments. Tilianin, isolated from the traditional drug Dracocephalum moldavica L., may protect against ischemic injury by inhibiting oxidative stress and inflammation via the CaMKII-related pathways but with weak affinity with the CaMKII molecule. microRNAs (miRNAs), functioning in post-transcriptional regulation of gene expression, may play a role in the pathological process of VaD via cognitive impairment, neuroinflammatory response, and neuronal dysfunction. This study aimed to investigate the role of tilianin in VaD therapy and the underlying mechanism through which tilianin regulates CaMKII signaling pathways based on miRNA-associated transcriptional action. Methods: Rats with 2-vessel occlusion (2VO), a standard model of VaD, were treated with tilianin, vehicle control, and target overexpression or downregulation. High-throughput sequencing, qRT-PCR, and western blot analyses were utilized to identify the downstream target genes and signaling pathways of tilianin involved in VaD. Results: Our results showed that tilianin ameliorated cognitive deficits, neurodegeneration, and microglial and astrocytic activation in rats with 2VO. Subsequent high-throughput sequencing and qRT-PCR analyses revealed that tilianin increased the downregulated miR-193b-3p and miR-152-3p levels in the cortex and hippocampus of 2VO rats. Mechanistically, miR-193b-3p targeting CaM and miR-152-3p targeting CaMKIIα were identified to play a role in VaD-associated pathology, inhibiting the p38 MAPK/NF--κB p65 pathway and decreasing TNF-α and IL-6 levels. Further gain- and loss-of-function experiments for these key genes showed that tilianin-exerted cognitive improvement by activating the p38 MAPK/NF--κB p65 and Bcl-2/Bax/caspase-3/PARP pathways in the brain of 2VO rats was abolished by miR-193b-3p and miR-152-3p inhibition. Moreover, CaM and CaMKIIα overexpression eliminated the elevated effects of miR-193b-3p and miR-152-3p on tilianin's protection against ischemic injury through increased inflammatory reactions and apoptotic signaling. Discussion: Together, these findings indicate that tilianin improves cognition by regulating the miR-193b-3p/CaM- and miR-152-3p/CaMKIIα-mediated inflammatory and apoptotic pathways, suggesting a potential small-molecule regulator of miRNA associated with inflammatory signaling for VaD treatment.


Asunto(s)
Demencia Vascular , MicroARNs , Animales , Ratas , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cognición , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/genética , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
14.
Artículo en Inglés | MEDLINE | ID: mdl-38091076

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Vitamin E (VE) has antioxidant properties and can mediate lipid metabolism. Non-targeted metabolomics technology was employed to uncover comprehensively the metabolome of VE in NAFLD rats. NAFLD model was created with a high-fat and high-cholesterol diet (HFD) in rats. NAFLD rats in the VE group were given 75 mg/(kg day) VE. The metabolites in the serum of rats were identified via UPLC and Q-TOF/MS analysis. KEGG was applied for the pathway enrichment. VE improved the liver function, lipid metabolism, and oxidative stress in NAFLD rats induced by HFD. Based on the metabolite profile data, 132 differential metabolites were identified between VE group and the HFD group, mainly including pyridoxamine, betaine, and bretylium. According to the KEGG results, biosynthesis of cofactors was a key metabolic pathway of VE in NAFLD rats. VE can alleviate NAFLD induced by HFD, and the underlying mechanism is associated with the biosynthesis of cofactors, mainly including pyridoxine and betaine.

15.
Open Med (Wars) ; 17(1): 329-340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35274048

RESUMEN

Background: Radiotherapy-associated secondary cancer is an important issue for the treatment of breast cancer (BCa). This study aimed to investigate the molecular mechanism and genetic risk factors for radiation-associated secondary diseases in BCa. Methods: The differentially expressed genes (DEGs) between preradiation and postradiation BCa samples in the GSE65505 dataset were obtained. The pathways related to the radiation-associated DEGs in the protein-protein interaction (PPI) network modules were identified. miRNAs targeted to the key genes in the PPI network were identified, and their association with BCa prognosis was analyzed. Results: A total of 136 radiation-associated DEGs preradiation and postradiation BCa samples were screened out. The PPI network consisted of a significant module that consisted of 21 upregulated DEGs that were associated with "hsa04512: ECM-receptor interaction," "hsa04151: PI3K-Akt signaling pathway," and "hsa04115: p53 signaling pathway." Sixteen DEGs, including three collagen genes collagen type I alpha 1 chain (COL1A1), COL3A1, and COL1A2, were enriched in 17 radiation-associated pathways. The three genes were upregulated in BCa tissues compared with controls and were also elevated by radiation. They were targeted by hsa-miR-29a/c, and the expression levels of hsa-miR-29a/c were associated with a poor prognosis of BCa. Conclusions: The upregulation of COL1A1, COL3A1, and COL1A2 might be genetic risk factors for radiation-associated secondary diseases in BCa.

16.
Biomed Res Int ; 2022: 7111901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572723

RESUMEN

Hyssopus cuspidatus Boriss (H. cuspidatus) is a traditional Chinese medicine commonly used in the treatment of asthma. In the present study, we applied bioinformatics techniques for mRNA-miRNA profiling to elucidate the potential mechanisms of H. cuspidatus in asthma treatment. Bioactive compounds from H. cuspidatus, potential therapeutic targets of H. cuspidatus, and asthma-related targets were identified from the literature and databases. The intersection of H. cuspidatus-related targets and asthma-related targets was identified using the STRING platform. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Metascape platform. Networks were constructed from these nodes using Cytoscape. The results showed that 23 active compounds were identified in H. cuspidatus, sharing 122 common asthma-related targets. Moreover, 43 miRNAs regulating 19 key targets involved in the antiasthmatic effects of H. cuspidatus were identified. Further analysis of biological pathways, active compound-key target-pathway network, and active compound-key target-miRNA network indicated that the antiasthmatic effects of H. cuspidatus mainly occurred through caffeic acid, methyl rosmarinate, luteolin, esculetin, and 8-hydroxycirsimaritin. These compounds interacted with multiple miRNAs, including miR-99a, miR-498, miR-33b, and miR-18a, regulating multiple genes, including JAK, STAT3, EGFR, LYN, and IL-6, in multiple pathways, including those involved in the regulation of JAK-STAT signaling, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling, and inflammation. In summary, we have elucidated the potential mechanisms of H. cuspidatus treatment of asthma from a systemic and holistic perspective through analysis of compound-mRNA-miRNA interaction. Our study should provide new insights for further research on H. cuspidatus treatment of asthma.


Asunto(s)
Antiasmáticos , Asma , MicroARNs , Asma/tratamiento farmacológico , Asma/genética , Biología Computacional , Receptores ErbB , Hyssopus , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas , ARN Mensajero/genética
17.
Front Neurosci ; 16: 917489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203804

RESUMEN

Vascular dementia (VaD) is the second most common form of dementia with uncertain mechanisms and no effective treatments. microRNAs (miRNAs) and transcription factors (TFs) are considered regulatory factors of genes involved in many diseases. Therefore, this work investigated the aberrantly expressed miRNAs, TFs, corresponding target genes, and their co-regulatory networks in the cortex of rats with bilateral common carotid artery occlusion (2VO) to uncover the potential mechanism and biomarkers of VaD. Differentially expressed genes (DEGs), miRNAs (DEMs), and TFs (DETFs) were identified using RNA sequencing, and their interaction networks were constructed using Cytoscape. The results showed that rats with 2VO had declined cognitive abilities and neuronal loss in the cortex than sham rats. DEGs, DEMs, and DETFs were discriminated between rats with 2VO and sham rats in the cortex, as shown by the 13 aberrantly expressed miRNAs, 805 mRNAs, and 63 TFs. The miRNA-TF-target gene network was constructed, showing 523 nodes and 7237 edges. Five miRNAs (miR-5132-5p, miR-764-3p, miR-223-3p, miR-145-5p, and miR-122-5p), ten TFs (Mxi1, Nfatc4, Rxrg, Zfp523, Foxj2, Nkx6-1, Klf4, Klf5, Csrnp1, and Prdm6), and seven target genes (Serpine1, Nedd4l, Pxn, Col1a1, Plec, Trip12, and Tpm1) were chosen as the significant nodes to construct feed-forward loops (FFLs). Gene Ontology and pathway enrichment analysis revealed that these miRNA and TF-associated genes are mostly involved in the PI3K/Akt, neuroactive ligand-receptor interaction, calcium signaling, and Wnt signaling pathways, along with central locations around the cell membrane. They exert functions such as growth factor binding, integrin binding, and extracellular matrix structural constituent, with representative biological processes like vasculature development, cell-substrate adhesion, cellular response to growth factor stimulus, and synaptic transmission. Furthermore, the expression of three miRNAs (miR-145-5p, miR-122-5p, and miR-5132-5p), six TFs (Csrnp1, Klf4, Nfatc4, Rxrg, Foxj2, and Klf5), and five mRNAs (Serpine1, Plec, Nedd4l, Trip12, and Tpm1) were significantly changed in rats with VaD, in line with the outcome of RNA sequencing. In the potential FFL, miR-145-5p directly bound Csrnp1 and decreased its mRNA expression. These results might help the understanding of the underlying regulatory mechanisms of miRNA-TF-genes, providing potential therapeutic targets in VaD.

18.
Mol Ther Nucleic Acids ; 27: 256-275, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35024240

RESUMEN

Existing studies have revealed that microRNAs (miRNAs) have a role in cognitive deficits in Alzheimer's disease (AD). However, the function and pathophysiological mechanism of deregulated miRNAs underlying AD pathology remain to be investigated. The present study aimed to clarify the role and mechanism of miR-148a-3p in AD. RNA sequencing, qRT-PCR, and western blot analysis were used to identify the aberrant expression and signaling of miR-148a-3p within cells, mice, and patients with AD. Molecular biology techniques involving luciferase reporter assays, gene overexpression and silencing, chromatin immunoprecipitation, and adeno-associated virus-based miRNA overexpression were used to explore the biological function and mechanisms of miR-148a-3p. Downregulation of miR-148a-3p was identified in AD. Upregulation of miR-148a-3p was found to protect neuronal cells against Aß-associated tau hyperphosphorylation by directly targeting p35/CDK5 and PTEN/p38 mitogen-activated protein kinase (MAPK) pathways. A mutual regulatory link between miR-148a-3p and PTEN using a feedforward arrangement was confirmed via promotion of transcription and expression of miR-148a-3p by way of the PTEN/Akt/CREB pathway. Significantly, in vivo targeting of miR-148a-3p signaling ameliorated cognitive deficits by decreasing p35/PTEN-elicited tau hyperphosphorylation, accompanied by feedforward transduction of the PTEN/Akt/CREB pathway. In conclusion, the present study implicated the miR-148a-3p/p35/PTEN pathway as an essential contributor to tau hyperphosphorylation and feedforward regulation in AD.

19.
J Zhejiang Univ Sci B ; 22(7): 590-598, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34269011

RESUMEN

Although microRNA-155 (miR-155) is considered a pro-inflammatory mediator, cumulative evidence indicates that it also has anti-inflammatory effects in macrophages and dendritic cells. In this study, we identified the dramatic expression changes of more than half of potential miR-155-targeted genes upon lipopolysaccharide (LPS) stimulation; 223 genes were down-regulated and 85 genes were up-regulated, including suppressor of cytokine signaling 1 (SOCS1) and transforming growth factor-ß-activated kinase 1-binding protein 2 (TAB2), two well-known genes involved in miR-155-mediated regulation of the Toll-like receptor 4 (TLR4) signaling pathway. We also found that miR-155 acted as an anti-inflammatory mediator in the initial stage of LPS-induced inflammatory response mainly through repressing TAB2 protein translation, and as a pro-inflammatory mediator by down-regulating SOCS1 in the later stage. Meanwhile, overexpression of TAB2 3' untranslated region (UTR) in macrophages promoted the development of endotoxin tolerance by competing for binding with miR-155, which resulted in an elevated expression level of SOCS1 protein. These findings provide new insights for understanding the regulatory mechanisms in fine-tuning of LPS-induced innate immune response.


Asunto(s)
Inflamación/metabolismo , Lipopolisacáridos/metabolismo , MicroARNs/genética , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Células Dendríticas/metabolismo , Tolerancia a Endotoxinas , Endotoxinas/metabolismo , Inmunidad Innata , Macrófagos/metabolismo , Ratones , MicroARNs/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Proteína 1 Supresora de la Señalización de Citocinas/biosíntesis , Receptor Toll-Like 4/biosíntesis
20.
Front Pharmacol ; 12: 796628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938197

RESUMEN

Vascular dementia (VaD) is a general term used to describe difficulties in memory, reasoning, judgment, and planning caused by a reduced blood flow to the brain and consequent brain damage, in which microRNAs (miRNAs) are involved. Dracocephalum moldavica L. (D. moldavica) is traditionally used in the treatment of cardiovascular diseases as well as VaD, but the biomolecular mechanisms underlying its therapeutic effect are obscure. In the present study, the molecular mechanisms involved in the treatment of VaD by the total flavonoids from Dracocephalum moldavica L. (TFDM) were explored by the identification of miRNA profiling using bioinformatics analysis and experimental verification. A total of 2,562 differentially expressed miRNAs (DEMs) and 3,522 differentially expressed genes (DEGs) were obtained from the GSE120584 and GSE122063 datasets, in which the gene functional enrichment and protein-protein interaction network of 93 core targets, originated from the intersection of the top DEM target genes and DEGs, were established for VaD gene profiling. One hundred and eighty-five targets interacting with 42 flavonoids in the TFDM were included in a compound-target network, subsequently found that they overlapped with potential targets for VaD. These 43 targets could be considered in the treatment of VaD by TFDM, and included CaMKII, MAPK, MAPT, PI3K, and KDR, closely associated with the vascular protective effect of TFDM, as well as anti-oxidative, anti-inflammatory, and anti-apoptotic properties. The subsequent analysis of the compound-target gene-miRNA network indicated that eight miRNAs that mediated 43 targets had a close interaction with TFDM, suggesting that the neuroprotective effects were principally due to kaempferol, apigenin, luteolin, and quercetin, which were mostly associated with the miR-3184-3p/ESR1, miR-6762-3p/CDK1, miR-6777-3p/ESRRA, and other related axes. Furthermore, the in vitro oxygen-glucose deprivation (OGD) model demonstrated that the dysregulation of miR-3184-3p and miR-6875-5p found by qRT-PCR was consistent with the changes in the bioinformatics analysis. TFDM and its active compounds involving tilianin, luteolin, and apigenin showed significant effects on the upregulation of miR-3184-3p and downregulation of miR-6875-5p in OGD-injured cells, in line with the improved cell viability. In conclusion, our findings revealed the underlying miRNA-target gene network and potential targets of TFDM in the treatment of VaD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA