Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Org Chem ; 89(3): 1703-1708, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38227772

RESUMEN

Visible-light-induced three-component 1,2-alkylpyridylation of alkenes with unactivated alkyl iodides and aryl cyanides is reported via a photocatalytic halogen-atom transfer (XAT) strategy. This metal-free protocol utilizes readily available tertiary alkylamine as the terminal reductant to smoothly convert alkyl iodides into the corresponding carbon radical species. The reaction features a broad substrate scope, excellent functional group tolerance, high efficiency, and mild reaction conditions. The practicability of this methodology is further demonstrated in the late-stage difunctionalization of bioactive molecules.

2.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613496

RESUMEN

The phenomenon of cross adaptation refers to the ability of plants to improve their resistance to other stress after experiencing one type of stress. However, there are limited reports on how ultraviolet radiation B (UVB) pretreatment affects the enrichment, transport, and tolerance of cadmium (Cd) in plants. Since an appropriate UVB pretreatment has been reported to change plant tolerance to stress, we hypothesized that this application could alter plant uptake and tolerance to heavy metals. In this study, a woody plant species, 84K poplar (Populus alba × Populus glandulosa), was pretreated with UVB and then subjected to Cd treatment. The RT-qPCR results indicated that the UVB-treated plants could affect the expression of Cd uptake, transport, and detoxification-related genes in plants, and that the UVB-Pretreatment induced the ability of Cd absorption in plants, which significantly enriched Cd accumulation in several plant organs, especially in the leaves and roots. The above results showed that the UVB-Pretreatment further increased the toxicity of Cd to plants in UVB-Cd group, which was shown as increased leaf malonaldehyde (MDA) and hydrogen peroxide (H2O2) content, as well as downregulated activities of antioxidant enzymes such as Superoxide Dismutase (SOD), Catalase (CAT), and Ascorbate peroxidase (APX). Therefore, poplar plants in the UVB-Cd group presented a decreased photosynthesis and leaf chlorosis. In summary, the UVB treatment improved the Cd accumulation ability of poplar plants, which could provide some guidance for the potential application of forest trees in the phytoremediation of heavy metals in the future.


Asunto(s)
Cadmio , Populus , Cadmio/metabolismo , Populus/genética , Populus/metabolismo , Peróxido de Hidrógeno/metabolismo , Rayos Ultravioleta , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Estrés Oxidativo
3.
BMC Genomics ; 22(1): 731, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625025

RESUMEN

BACKGROUND: Trees such as Populus are planted extensively for reforestation and afforestation. However, their successful establishment greatly depends upon ambient environmental conditions and their relative resistance to abiotic and biotic stresses. Polyphenol oxidase (PPO) is a ubiquitous metalloproteinase in plants, which plays crucial roles in mediating plant resistance against biotic and abiotic stresses. Although the whole genome sequence of Populus trichocarpa has long been published, little is known about the PPO genes in Populus, especially those related to drought stress, mechanical damage, and insect feeding. Additionally, there is a paucity of information regarding hormonal responses at the whole genome level. RESULTS: A genome-wide analysis of the poplar PPO family was performed in the present study, and 18 PtrPPO genes were identified. Bioinformatics and qRT-PCR were then used to analyze the gene structure, phylogeny, chromosomal localization, gene replication, cis-elements, and expression patterns of PtrPPOs. Sequence analysis revealed that two-thirds of the PtrPPO genes lacked intronic sequences. Phylogenetic analysis showed that all PPO genes were categorized into 11 groups, and woody plants harbored many PPO genes. Eighteen PtrPPO genes were disproportionally localized on 19 chromosomes, and 3 pairs of segmented replication genes and 4 tandem repeat genomes were detected in poplars. Cis-acting element analysis identified numerous growth and developmental elements, secondary metabolism processes, and stress-related elements in the promoters of different PPO members. Furthermore, PtrPPO genes were expressed preferentially in the tissues and fruits of young plants. In addition, the expression of some PtrPPOs could be significantly induced by polyethylene glycol, abscisic acid, and methyl jasmonate, thereby revealing their potential role in regulating the stress response. Currently, we identified potential upstream TFs of PtrPPOs using bioinformatics. CONCLUSIONS: Comprehensive analysis is helpful for selecting candidate PPO genes for follow-up studies on biological function, and progress in understanding the molecular genetic basis of stress resistance in forest trees might lead to the development of genetic resources.


Asunto(s)
Catecol Oxidasa , Proteínas de Plantas/genética , Populus , Catecol Oxidasa/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Filogenia , Populus/enzimología , Populus/genética , Estrés Fisiológico
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925110

RESUMEN

Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.


Asunto(s)
Genes de Plantas , Proteínas de Plantas/genética , Populus/genética , Factores de Transcripción/genética , Arabidopsis/genética , Cromosomas de las Plantas/genética , Evolución Molecular , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Oryza/genética , Filogenia , Populus/crecimiento & desarrollo , Especificidad de la Especie , Estrés Fisiológico/genética , Sintenía
5.
ChemSusChem ; 17(5): e202301428, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38302692

RESUMEN

The lifetime of hydroxyl radicals (⋅OH) in the fuel cell catalyst layer remains uncertain, which hampers the comprehension of radical-induced degradation mechanisms and the development of longevity strategies for proton-exchange membrane fuel cells (PEMFCs). In this study, we have precisely determined that the lifetime of ⋅OH radicals can extend up to several seconds in realistic fuel cell catalyst layers. This finding reveals that ⋅OH radicals are capable of carrying out long-range attacks spanning at least a few centimeters during PEMFCs operation. Such insights hold great potential for enhancing our understanding of radical-mediated fuel cell degradation processes and promoting the development of durable fuel cell devices.

6.
Nat Commun ; 13(1): 7899, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550156

RESUMEN

The development of electrocatalysts capable of efficient reduction of nitrate (NO3-) to ammonia (NH3) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO2- via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NOx- adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm-2 at -0.2 V vs. Reversible Hydrogen Electrode. The NH3 production rate reaches a high activity of 4.8 mmol cm-2 h-1 (960 mmol gcat-1 h-1). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO3- to NH3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO3 led simultaneously to high NH3 selectivity and yield.


Asunto(s)
Amoníaco , Carbono , Hidrogenación , Adsorción , Nitrito Reductasas
7.
Int J Biol Macromol ; 204: 76-88, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35124018

RESUMEN

Cadmium, a toxic heavy metal, seriously affects human health and ecological security. The cation/H+ exchanger (CAX) family is a unique metal transporter that plays a crucial role in Cd acquisition, transfer, and remission in plants. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been done on the CAX family genes, especially concerning Cd stress. In this study, genome-wide analysis of the Populus CAX family identified seven stress-related CAX genes. The evolutionary tree indicated that the CaCA family genes were grouped into four clusters. Moreover, seven pairs of genes were derived by segmental duplication in poplars. Cis-acting element analysis identified numerous stress-related elements in the promoters of diverse PtrCAXs. Furthermore, some PtrCAXs were up-regulated by drought, beetle, and mechanical damage, indicating their possible function in regulating stress response. Under cadmium stress, all CAX genes in the roots were up-regulated. Our findings suggest that plants may regulate their response to Cd stress through the TF-CAXs module. Comprehensively investigating the CAX family provides a scientific basis for the phytoremediation of heavy metal pollution by Populus.


Asunto(s)
Populus , Cadmio/metabolismo , Cadmio/toxicidad , Cationes/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Estrés Fisiológico/genética
8.
Tree Physiol ; 41(11): 2126-2141, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-33960381

RESUMEN

Phytoremediation technology can help achieve moderate cost and considerable effect with respect to the remediation of heavy metal (HM) pollution in soil and water. Many previous studies have suggested the role of nitrogen (N) in the alleviation of effects of HM on plants. Herein, we sought to determine the molecular mechanisms by which additional N supplementation mitigates cadmium (Cd) toxicity in poplars using a combination of physiological, transcriptomic and phosphoproteomic analyses. The application of N can alleviate the toxicity of Cd to Populus by reducing chlorophyll degradation, maintaining the stability of ions inside and outside the cell membrane and increasing the soluble sugar content. Plant samples from the control, Cd stress and Cd_N treatments were used for an integrated analysis of the transcriptome, as well as for phosphoproteomics analysis. Moreover, 1314 differentially expressed genes and 119 differentially expressed kinase genes were discovered. Application of additional N under Cd stress promoted the phosphorylation process. Furthermore, 51 significantly enriched phosphorylated protein sites and 23 differentially expressed kinases were identified using phosphoproteomic and proteomic analyses. Importantly, transcriptomic and phosphoproteomic analyses jointly determined that the application of N could activate corresponding gene expression [UDP-glucose-dehydrogenase (UGD), GAUT, PME, pectin lyase, UDP-glucose-pyrophosphorylase 2 (UGP2), sucrose phosphate synthase (SPS), SUS and SPP2] and protein phosphorylation (UGP2 and SPS) in the sugar and starch synthesis pathways, which promoted the synthesis of sucrose and soluble sugar and subsequently alleviated the damage caused by Cd.


Asunto(s)
Cadmio , Populus , Cadmio/metabolismo , Cadmio/toxicidad , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Proteómica , Almidón/metabolismo , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA