Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 237: 124194, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36972825

RESUMEN

To solve pollution problem of heavy metal ions (HMIs) and recover them for sustainable development, a high-efficient-sewage treatment agent, carbon dots/cellulose nanofiber/Mg(OH)2 (CCMg), has been fabricated via a simple hydrothermal method. A variety of characterizations show that cellulose nanofiber (CNF) formed a layered-net structure. Hexagonal Mg(OH)2 flakes of about 100 nm has been attached on CNF. Carbon dots (CDs) around 10-20 nm in size were produced from CNF and distributed along CNF. The extraordinary structural feature endows CCMg with high removal performance towards HMIs. The up-taken capacities reach 992.8 and 667.3 mg g-1 for Cd2+ and Cu2+, respectively. The composite bears excellent durability in treating wastewater. Notably, the qualification of the drinking water can be satisfied while applying CCMg to handle Cu2+ wastewater. The mechanism of removal process has been proposed. Practically, Cd2+/Cu2+ ions were immobilized by CNF due to the space confinement effect. It achieves the facile separation and recovery of HMIs from the sewage, and more importantly, eliminates the risk of secondary contamination.


Asunto(s)
Metales Pesados , Nanofibras , Hidróxido de Magnesio , Carbono , Celulosa/química , Nanofibras/química , Aguas Residuales , Aguas del Alcantarillado , Metales Pesados/química , Iones/química
2.
Carbohydr Polym ; 268: 118235, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34127218

RESUMEN

In-depth understanding of interfacial property is the key to guiding the synthesis of biomass composites with desired performance. However, the exploration is of great challenge due to limitations of experimental techniques in locating hydrogen, requiring large/good crystals and detecting a weak interaction like van der Waals (vdW). Herein, we experimentally and computationally investigated the composite cellulose/zinc oxide/g-C3N4. Hydrothermal synthesis afforded cellulose/ZnO, and then fabricated the ternary composite by adding g-C3N4 under ultrasonic condition. Three components are found to co-exist in the composite, and the ZnO nanoparticle is attaching to cellulose and coupling with g-C3N4. These experimental findings were corroborated by relativistic DFT calculations. The interfacial coupling is elaborated as contributions of dative bonds, hydrogen bonds and vdW interaction. The vdW is increased by a factor of 4.23 in the ZnO/g-C3N4 interface. This improves electron-hole separation and offers prospective application of the composite in photocatalysis, antibacteria and gas sensing.


Asunto(s)
Celulosa/química , Grafito/química , Nanocompuestos/química , Compuestos de Nitrógeno/química , Óxido de Zinc/química , Catálisis/efectos de la radiación , Celulosa/efectos de la radiación , Teoría Funcional de la Densidad , Grafito/efectos de la radiación , Luz , Modelos Químicos , Nanocompuestos/efectos de la radiación , Compuestos de Nitrógeno/efectos de la radiación , Electricidad Estática , Óxido de Zinc/efectos de la radiación
3.
Int J Biol Macromol ; 191: 584-590, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34582905

RESUMEN

The specification of the local structure and clarification of interfacial interactions of biomass composites is of tremendous significance in synthesizing novel materials and advancing their performance in various demanding applications. However, it remains challenging due to the limitations of experimental techniques, particularly for the manner that biomass composites commonly have hydrogen bonds involved in the vicinity of active sites and interfaces. Herein, the cellulose/Mg(OH)2 nanocomposite has been synthesized via a simple hydrothermal approach and examined by density functional theory (DFT) calculations. The composite exhibits a layered morphology; Mg(OH)2 flakes are around 50 nm in size and well-dispersed. They either anchor onto the cellulose surface or intercalate between layers. The specific composite structure was confirmed theoretically, in line with XRD, SEM and TEM observations. The interfacial interactions were found to be hydrogen bonding. The average adsorption energy per hydroxyl group was computed to be within -0.47 and -0.26 eV for a composite model comprising three cellulose chains and a two-layered Mg(OH)2 cluster. The combined computational/experimental results allow to postulate the antibacterial mechanism of the nanocomposite.


Asunto(s)
Antibacterianos/química , Celulosa/análogos & derivados , Hidróxido de Magnesio/química , Nanocompuestos/química , Adsorción , Antibacterianos/farmacología , Biomasa , Enlace de Hidrógeno , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA