Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 295(11): 3601-3613, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31949049

RESUMEN

Insulin secretion by pancreatic islet ß-cells is regulated by glucose levels and is accompanied by proton generation. The voltage-gated proton channel Hv1 is present in pancreatic ß-cells and extremely selective for protons. However, whether Hv1 is involved in insulin secretion is unclear. Here we demonstrate that Hv1 promotes insulin secretion of pancreatic ß-cells and glucose homeostasis. Hv1-deficient mice displayed hyperglycemia and glucose intolerance because of reduced insulin secretion but retained normal peripheral insulin sensitivity. Moreover, Hv1 loss contributed much more to severe glucose intolerance as the mice got older. Islets of Hv1-deficient and heterozygous mice were markedly deficient in glucose- and K+-induced insulin secretion. In perifusion assays, Hv1 deletion dramatically reduced the first and second phase of glucose-stimulated insulin secretion. Islet insulin and proinsulin content was reduced, and histological analysis of pancreas slices revealed an accompanying modest reduction of ß-cell mass in Hv1 knockout mice. EM observations also indicated a reduction in insulin granule size, but not granule number or granule docking, in Hv1-deficient mice. Mechanistically, Hv1 loss limited the capacity for glucose-induced membrane depolarization, accompanied by a reduced ability of glucose to raise Ca2+ levels in islets, as evidenced by decreased durations of individual calcium oscillations. Moreover, Hv1 expression was significantly reduced in pancreatic ß-cells from streptozotocin-induced diabetic mice, indicating that Hv1 deficiency is associated with ß-cell dysfunction and diabetes. We conclude that Hv1 regulates insulin secretion and glucose homeostasis through a mechanism that depends on intracellular Ca2+ levels and membrane depolarization.


Asunto(s)
Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Secreción de Insulina , Canales Iónicos/metabolismo , Envejecimiento/patología , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Tamaño de la Célula , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Citosol/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Regulación hacia Abajo/efectos de los fármacos , Eliminación de Gen , Glucosa/farmacología , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/ultraestructura , Canales Iónicos/deficiencia , Canales Iónicos/genética , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Acetato de Tetradecanoilforbol/farmacología
2.
Biophys Rep ; 9(4): 206-214, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-38516621

RESUMEN

Super-resolution microscopy has promoted the development of cell biology, but imaging proteins with low copy numbers in cellular structures remains challenging. The limited number of designated proteins within nuclear pore complexes (NPCs) impedes continuous observation in live cells, although they are often used as a standard for evaluating various SR methods. To address this issue, we tagged POM121 with Halo-SiR and imaged it using structured illumination microscopy with sparse deconvolution (Sparse-SIM). Remarkably, POM121-SiR exhibited more than six-fold fluorescence intensity and four-fold enhanced contrast compared to the same protein labeled with tandem-linked mCherry, while showing negligible photo-bleaching during SR imaging for 200 frames. Using this technique, we discovered various types of NPCs, including ring-like and cluster-like structures, and observed dynamic remodeling along with the sequential appearance of different Nup compositions. Overall, Halo-SiR with Sparse-SIM is a potent tool for extended SR imaging of dynamic structures of NPCs in live cells, and it may also help visualize proteins with limited numbers in general.

3.
Sci China Life Sci ; 66(8): 1858-1868, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37129766

RESUMEN

Hypomyelination leukodystrophies constitute a group of heritable white matter disorders exhibiting defective myelin development. Initially identified as a lysosomal protein, the TMEM106B D252N mutant has recently been associated with hypomyelination. However, how lysosomal TMEM106B facilitates myelination and how the D252N mutation disrupts that process are poorly understood. We used superresolution Hessian structured illumination microscopy (Hessian-SIM) and spinning disc-confocal structured illumination microscopy (SD-SIM) to find that the wild-type TMEM106B protein is targeted to the plasma membrane, filopodia, and lysosomes in human oligodendrocytes. The D252N mutation reduces the size of lysosomes in oligodendrocytes and compromises lysosome changes upon starvation stress. Most importantly, we detected reductions in the length and number of filopodia in cells expressing the D252N mutant. PLP1 is the most abundant myelin protein that almost entirely colocalizes with TMEM106B, and coexpressing PLP1 with the D252N mutant readily rescues the lysosome and filopodia phenotypes of cells. Therefore, interactions between TMEM106B and PLP1 on the plasma membrane are essential for filopodia formation and myelination in oligodendrocytes, which may be sustained by the delivery of these proteins from lysosomes via exocytosis.


Asunto(s)
Proteínas del Tejido Nervioso , Seudópodos , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Seudópodos/metabolismo , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Mutación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
4.
Light Sci Appl ; 12(1): 298, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097537

RESUMEN

In fluorescence microscopy, computational algorithms have been developed to suppress noise, enhance contrast, and even enable super-resolution (SR). However, the local quality of the images may vary on multiple scales, and these differences can lead to misconceptions. Current mapping methods fail to finely estimate the local quality, challenging to associate the SR scale content. Here, we develop a rolling Fourier ring correlation (rFRC) method to evaluate the reconstruction uncertainties down to SR scale. To visually pinpoint regions with low reliability, a filtered rFRC is combined with a modified resolution-scaled error map (RSM), offering a comprehensive and concise map for further examination. We demonstrate their performances on various SR imaging modalities, and the resulting quantitative maps enable better SR images integrated from different reconstructions. Overall, we expect that our framework can become a routinely used tool for biologists in assessing their image datasets in general and inspire further advances in the rapidly developing field of computational imaging.

5.
Cell Res ; 32(2): 119-138, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34561617

RESUMEN

Under stress, the endomembrane system undergoes reorganization to support autophagosome biogenesis, which is a central step in autophagy. How the endomembrane system remodels has been poorly understood. Here we identify a new type of membrane contact formed between the ER-Golgi intermediate compartment (ERGIC) and the ER-exit site (ERES) in the ER-Golgi system, which is essential for promoting autophagosome biogenesis induced by different stress stimuli. The ERGIC-ERES contact is established by the interaction between TMED9 and SEC12 which generates a short distance opposition (as close as 2-5 nm) between the two compartments. The tight membrane contact allows the ERES-located SEC12 to transactivate COPII assembly on the ERGIC. In addition, a portion of SEC12 also relocates to the ERGIC. Through both mechanisms, the ERGIC-ERES contact promotes formation of the ERGIC-derived COPII vesicle, a membrane precursor of the autophagosome. The ERGIC-ERES contact is physically and functionally different from the TFG-mediated ERGIC-ERES adjunction involved in secretory protein transport, and therefore defines a unique endomembrane structure generated upon stress conditions for autophagic membrane formation.


Asunto(s)
Autofagosomas , Aparato de Golgi , Autofagosomas/metabolismo , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas
6.
Nat Biotechnol ; 40(4): 606-617, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34782739

RESUMEN

A main determinant of the spatial resolution of live-cell super-resolution (SR) microscopes is the maximum photon flux that can be collected. To further increase the effective resolution for a given photon flux, we take advantage of a priori knowledge about the sparsity and continuity of biological structures to develop a deconvolution algorithm that increases the resolution of SR microscopes nearly twofold. Our method, sparse structured illumination microscopy (Sparse-SIM), achieves ~60-nm resolution at a frame rate of up to 564 Hz, allowing it to resolve intricate structures, including small vesicular fusion pores, ring-shaped nuclear pores formed by nucleoporins and relative movements of inner and outer mitochondrial membranes in live cells. Sparse deconvolution can also be used to increase the three-dimensional resolution of spinning-disc confocal-based SIM, even at low signal-to-noise ratios, which allows four-color, three-dimensional live-cell SR imaging at ~90-nm resolution. Overall, sparse deconvolution will be useful to increase the spatiotemporal resolution of live-cell fluorescence microscopy.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos
7.
Neuroscience ; 476: 60-71, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34506833

RESUMEN

Among the hypomyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) is a representative disorder. The disease is caused by different types of PLP1 mutations, among which PLP1 duplication accounts for ∼70% of the mutations. Previous studies have shown that PLP1 duplications lead to PLP1 retention in the endoplasmic reticulum (ER); in parallel, recent studies have demonstrated that PLP1 duplication can also lead to mitochondrial dysfunction. As such, the respective roles and interactions of the ER and mitochondria in the pathogenesis of PLP1 duplication are not clear. In both PLP1 patients' and healthy fibroblasts, we measured mitochondrial respiration with a Seahorse XF Extracellular Analyzer and examined the interactions between the ER and mitochondria with super-resolution microscopy (spinning-disc pinhole-based structured illumination microscopy, SD-SIM). For the first time, we demonstrated that PLP1 duplication mutants had closer ER-mitochondrion interfaces mediated through structural and morphological changes in both the ER and mitochondria-associated membranes (MAMs). These changes in both the ER and mitochondria then led to mitochondrial dysfunction, as reported previously. This work highlights the roles of MAMs in bridging PLP1 expression in the ER and pathogenic dysfunction in mitochondria, providing novel insight into the pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication. These findings suggest that interactions between the ER and mitochondria may underlie pathogenic mechanisms of hypomyelinating leukodystrophies diseases at the organelle level.


Asunto(s)
Proteína Proteolipídica de la Mielina , Enfermedad de Pelizaeus-Merzbacher , Retículo Endoplásmico , Humanos , Mitocondrias , Mutación , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Virulencia
8.
Sci China Life Sci ; 63(10): 1543-1551, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32279282

RESUMEN

Despite the wide application of super-resolution (SR) microscopy in biological studies of cells, the technology is rarely used to monitor functional changes in live cells. By combining fast spinning disc-confocal structured illumination microscopy (SD-SIM) with loading of cytosolic fluorescent Ca2+ indicators, we have developed an SR method for visualization of regional Ca2+ dynamics and related cellular organelle morphology and dynamics, termed SR calcium lantern imaging. In COS-7 cells stimulated with ATP, we have identified various calcium macrodomains characterized by different types of Ca2+ release from endoplasmic reticulum (ER) stores. Finally, we demonstrated various roles of mitochondria in mediating calcium signals from different sources; while mitochondria can globally potentiate the Ca2+ entry associated with store release, mitochondria also locally control Ca2+ release from the neighboring ER stores and assist in their refilling processes.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Imagen Óptica/métodos , Animales , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/metabolismo
9.
Dev Cell ; 35(1): 120-30, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26439397

RESUMEN

Many receptor-mediated endocytic processes are mediated by constitutive budding of clathrin-coated pits (CCPs) at spatially randomized sites before slowly pinching off from the plasma membrane (60-100 s). In contrast, clathrin-mediated endocytosis (CME) coupled with regulated exocytosis in excitable cells occurs at peri-exocytic sites shortly after vesicle fusion (∼10 s). The molecular mechanism underlying this spatiotemporal coupling remains elusive. We show that coupled endocytosis makes use of pre-formed CCPs, which hop to nascent fusion sites nearby following vesicle exocytosis. A dynamic cortical microtubular network, anchored at the cell surface by the cytoplasmic linker-associated protein on microtubules and the LL5ß/ELKS complex on the plasma membrane, provides the track for CCP hopping. Local diacylglycerol gradients generated upon exocytosis guide the direction of hopping. Overall, the CCP-cytoskeleton-lipid interaction demonstrated here mediates exocytosis-coupled fast recycling of both plasma membrane and vesicular proteins, and it is required for the sustained exocytosis during repetitive stimulations.


Asunto(s)
Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/fisiología , Diglicéridos/metabolismo , Exocitosis/fisiología , Insulinoma/metabolismo , Microtúbulos/fisiología , Neoplasias Pancreáticas/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Electrofisiología , Procesamiento de Imagen Asistido por Computador , Insulinoma/patología , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/patología , Ratas , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA