Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.382
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(13): 2765-2782.e28, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37327786

RESUMEN

Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contribution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are enriched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1 genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abrogates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation domains are detectable in blood specimens enriched for CTCs.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Carcinogénesis/genética , ADN , Epigénesis Genética , Neoplasias de la Próstata/genética , Células Neoplásicas Circulantes
2.
Cell ; 163(7): 1678-91, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26686652

RESUMEN

Somatic cells can be reprogrammed into pluripotent stem cells (PSCs) by using pure chemicals, providing a different paradigm to study somatic reprogramming. However, the cell fate dynamics and molecular events that occur during the chemical reprogramming process remain unclear. We now show that the chemical reprogramming process requires the early formation of extra-embryonic endoderm (XEN)-like cells and a late transition from XEN-like cells to chemically-induced (Ci)PSCs, a unique route that fundamentally differs from the pathway of transcription factor-induced reprogramming. Moreover, precise manipulation of the cell fate transition in a step-wise manner through the XEN-like state allows us to identify small-molecule boosters and establish a robust chemical reprogramming system with a yield up to 1,000-fold greater than that of the previously reported protocol. These findings demonstrate that chemical reprogramming is a promising approach to manipulate cell fates.


Asunto(s)
Técnicas de Reprogramación Celular , Células Madre Pluripotentes/citología , Animales , Descubrimiento de Drogas , Embrión de Mamíferos/citología , Endodermo/citología , Endodermo/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Ratones , Células Madre Pluripotentes/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 121(28): e2405473121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38950361

RESUMEN

Cycling cells replicate their DNA during the S phase through a defined temporal program known as replication timing. Mutation frequencies, epigenetic chromatin states, and transcriptional activities are different for genomic regions that are replicated early and late in the S phase. Here, we found from ChIP-Seq analysis that DNA polymerase (Pol) κ is enriched in early-replicating genomic regions in HEK293T cells. In addition, by feeding cells with N 2-heptynyl-2'-deoxyguanosine followed by click chemistry-based enrichment and high-throughput sequencing, we observed elevated Pol κ activities in genomic regions that are replicated early in the S phase. On the basis of the established functions of Pol κ in accurate and efficient nucleotide insertion opposite endogenously induced N 2-modified dG lesions, our work suggests that active engagement of Pol κ may contribute to diminished mutation rates observed in early-replicating regions of the human genome, including cancer genomes. Together, our work expands the functions of Pol κ and offered a plausible mechanism underlying replication timing-dependent mutation accrual in the human genome.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Fase S , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Células HEK293 , Genoma Humano , Momento de Replicación del ADN
4.
Nat Methods ; 20(6): 824-835, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37069271

RESUMEN

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.


Asunto(s)
Benchmarking , Microscopía , Microscopía/métodos , Imagenología Tridimensional/métodos , Neuronas/fisiología , Algoritmos
5.
Plant Physiol ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688011

RESUMEN

Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grape (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grape leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew, while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.

6.
Mol Cell ; 65(2): 296-309, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28065600

RESUMEN

In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites. Surprisingly, Loxl3 N-terminal scavenger receptor cysteine-rich (SRCR) repeats, rather than the C-terminal oxidase catalytic domain, represent the major deacetylase/deacetyliminase activity. Loxl3-mediated deacetylation/deacetylimination disrupts Stat3 dimerization, abolishes Stat3 transcription activity, and restricts cell proliferation. In Loxl3-/- mice, Stat3 is constitutively acetylated and naive CD4+ T cells are potentiated in Th17/Treg cell differentiation. When overexpressed, the SRCR repeats from other LOX family members can catalyze protein deacetylation/deacetylimination. Thus, our findings delineate a hitherto-unknown mechanism of protein deacetylation and deacetylimination catalyzed by lysyl oxidases.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Linfocitos T CD4-Positivos/enzimología , Colitis/enzimología , Procesamiento Proteico-Postraduccional , Factor de Transcripción STAT3/metabolismo , Acetilación , Aminoácido Oxidorreductasas/deficiencia , Aminoácido Oxidorreductasas/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Catálisis , Diferenciación Celular , Núcleo Celular/enzimología , Proliferación Celular , Colitis/genética , Colitis/inmunología , Modelos Animales de Enfermedad , Genotipo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Dominios Proteicos , Multimerización de Proteína , Interferencia de ARN , Factor de Transcripción STAT3/genética , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Células Th17/enzimología , Células Th17/inmunología , Transcripción Genética , Transfección
7.
Cell Mol Life Sci ; 81(1): 221, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763964

RESUMEN

In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.


Asunto(s)
Hormona Folículo Estimulante , Células de la Granulosa , Folículo Ovárico , Proteína Sequestosoma-1 , Ubiquitinación , Proteínas WT1 , Animales , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/farmacología , Femenino , Proteínas WT1/metabolismo , Proteínas WT1/genética , Ratones , Folículo Ovárico/metabolismo , Folículo Ovárico/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Ratones Endogámicos C57BL , Autofagia/efectos de los fármacos , Proteolisis/efectos de los fármacos , Humanos , Ratones Noqueados
8.
PLoS Genet ; 18(9): e1010381, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36126047

RESUMEN

Cortical actin, a thin layer of actin network underneath the plasma membranes, plays critical roles in numerous processes, such as cell morphogenesis and migration. Neurons often grow highly branched dendrite morphologies, which is crucial for neural circuit assembly. It is still poorly understood how cortical actin assembly is controlled in dendrites and whether it is critical for dendrite development, maintenance and function. In the present study, we find that knock-out of C. elegans chdp-1, which encodes a cell cortex-localized protein, causes dendrite formation defects in the larval stages and spontaneous dendrite degeneration in adults. Actin assembly in the dendritic growth cones is significantly reduced in the chdp-1 mutants. PVD neurons sense muscle contraction and act as proprioceptors. Loss of chdp-1 abolishes proprioception, which can be rescued by expressing CHDP-1 in the PVD neurons. In the high-ordered branches, loss of chdp-1 also severely affects the microtubule cytoskeleton assembly, intracellular organelle transport and neuropeptide secretion. Interestingly, knock-out of sax-1, which encodes an evolutionary conserved serine/threonine protein kinase, suppresses the defects mentioned above in chdp-1 mutants. Thus, our findings suggest that CHDP-1 and SAX-1 function in an opposing manner in the multi-dendritic neurons to modulate cortical actin assembly, which is critical for dendrite development, maintenance and function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Actinas/genética , Actinas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Proteínas Serina-Treonina Quinasas , Células Receptoras Sensoriales/metabolismo , Serina/metabolismo , Treonina/metabolismo
9.
BMC Biol ; 22(1): 110, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735918

RESUMEN

BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.


Asunto(s)
Productos Agrícolas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Aceites de Plantas , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Aceites de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
J Biol Chem ; 299(6): 104776, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142227

RESUMEN

A large number of oocytes in the perinatal ovary in rodents get lost for unknown reasons. The granulosa cell-oocyte mutual communication is pivotal for directing formation of the primordial follicle; however, little is known if paracrine factors participate in modulating programmed oocyte death perinatally. We report here that pregranulosa cell-derived fibroblast growth factor 23 (FGF23) functioned in preventing oocyte apoptosis in the perinatal mouse ovary. Our results showed that FGF23 was exclusively expressed in pregranulosa cells, while fibroblast growth factor receptors (FGFRs) were specifically expressed in the oocytes in perinatal ovaries. FGFR1 was one of the representative receptors in mediating FGF23 signaling during the formation of the primordial follicle. In cultured ovaries, the number of live oocytes declines significantly, accompanied by the activation of the p38 mitogen-activated protein kinase signaling pathway, under the condition of FGFR1 disruption by specific inhibitors of FGFR1 or silencing of Fgf23. As a result, oocyte apoptosis increased and eventually led to a decrease in the number of germ cells in perinatal ovaries following the treatments. In the perinatal mouse ovary, pregranulosa cell-derived FGF23 binds to FGFR1 and activates at least the p38 mitogen-activated protein kinase signaling pathway, thereby regulating the level of apoptosis during primordial follicle formation. This study reemphasizes the importance of granulosa cell-oocyte mutual communication in modulating primordial follicle formation and supporting oocyte survival under physiological conditions.


Asunto(s)
Apoptosis , Oocitos , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos , Apoptosis/genética , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Unión Proteica , Transducción de Señal
11.
Artículo en Inglés | MEDLINE | ID: mdl-38728170

RESUMEN

PURPOSE: This study was the first to evaluate the effect of CYP3A5*3 gene polymorphisms on plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy. METHODS: We enrolled 98 patients for this investigation. Plasma PER concentrations were measured using liquid chromatography-tandem mass spectrometry. Leftover samples from standard therapeutic drug monitoring were allocated for genotyping analysis. The primary measure of efficacy was the rate of seizure reduction with PER treatment at the final checkup. RESULTS: The plasma concentration showed a linear correlation with the daily dose taken ( r  = 0.17; P  < 0.05). The ineffective group showed a significantly lower plasma concentration of PER (490.5 ±â€…297.1 vs. 633.8 ±â€…305.5 µg/ml; P  = 0.019). For the mean concentration-to-dose (C/D) ratio, the ineffective group showed a significantly lower C/D ratio of PER (3.2 ±â€…1.7 vs. 3.8 ±â€…2.0; P  = 0.040). The CYP3A5*3 CC genotype exhibited the highest average plasma concentration of PER at 562.8 ±â€…293.9 ng/ml, in contrast to the CT and TT genotypes at 421.1 ±â€…165.6 ng/ml and 260.0 ±â€…36.1 ng/ml. The mean plasma PER concentration was significantly higher in the adverse events group (540.8 ±â€…285.6 vs. 433.0 ±â€…227.2 ng/ml; P  = 0.042). CONCLUSION: The CYP3A5*3 gene's genetic polymorphisms influence plasma concentrations of PER in Chinese pediatric patients with epilepsy. Given that both efficacy and potential toxicity are closely tied to plasma PER levels, the CYP3A5*3 genetic genotype should be factored in when prescribing PER to patients with epilepsy.

12.
EMBO J ; 39(12): e104133, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32347575

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging regulators of genomic stability and human disease. However, the molecular mechanisms by which nuclear lncRNAs directly contribute to DNA damage responses remain largely unknown. Using RNA antisense purification coupled with quantitative mass spectrometry (RAP-qMS), we found that the lncRNA BGL3 binds to PARP1 and BARD1, exhibiting unexpected roles in homologous recombination. Mechanistically, BGL3 is recruited to DNA double-strand breaks (DSBs) by PARP1 at an early time point, which requires its interaction with the DNA-binding domain of PARP1. BGL3 also binds the C-terminal BRCT domain and an internal region (amino acids 127-424) of BARD1, which mediates interaction of the BRCA1/BARD1 complex with its binding partners such as HP1γ and RAD51, resulting in BRCA1/BARD1 retention at DSBs. Cells depleted for BGL3 displayed genomic instability and were sensitive to DNA-damaging reagents. Overall, our findings underscore the biochemical versatility of RNA as a mediator molecule in the DNA damage response pathway, which affects the accumulation of BRCA1/BARD1 at DSBs.


Asunto(s)
Proteína BRCA1/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Complejos Multiproteicos/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína BRCA1/genética , Células HEK293 , Humanos , Células MCF-7 , Complejos Multiproteicos/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Dominios Proteicos , ARN Largo no Codificante/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
13.
Br J Haematol ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671583

RESUMEN

There is an urgent need for an oral, efficient and safe regimen for high-risk APL under the pandemic of COVID-19. We retrospectively analysed 60 high-risk APL patients. For induction therapy (IT), in addition to all-trans retinoic acid (ATRA) and oral arsenic (RIF), 22 patients received oral etoposide (VP16) as cytotoxic chemotherapy (CC), and 38 patients received intravenous CC as historical control group. The median dose of oral VP16 was 1000 mg [interquartile rage (IQR), 650-1250]. One patient died during IT in the control group, 59 evaluable patients (100%) achieved complete haematological remission (CHR) after IT and complete molecular remission (CMR) after consolidation therapy. The median time to CHR and CMR was 36 days (33.8-44) versus 35 days (32-42; p = 0.75) and 3 months (0.8-3.5) versus 3.3 months (2.4-3.7; p = 0.58) in the oral VP16 group and in the control group. Two (9.1%) and 3 (7.9%) patients experienced molecular relapse in different group respectively. The 2-year estimated overall survival and event-free survival were 100% versus 94.7% (p = 0.37) and 90.9% versus 89.5% (p = 0.97) respectively. A completely oral, efficient and safe induction regimen including oral VP16 as cytoreductive chemotherapy combined with ATRA and RIF is more convenient to administer for patients with high-risk APL.

14.
Nat Methods ; 18(8): 921-929, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34341581

RESUMEN

Precision mapping of glycans at structural and site-specific level is still one of the most challenging tasks in the glycobiology field. Here, we describe a modularization strategy for de novo interpretation of N-glycan structures on intact glycopeptides using tandem mass spectrometry. An algorithm named StrucGP is also developed to automate the interpretation process for large-scale analysis. By dividing an N-glycan into three modules and identifying each module using distinct patterns of Y ions or a combination of distinguishable B/Y ions, the method enables determination of detailed glycan structures on thousands of glycosites in mouse brain, which comprise four types of core structure and 17 branch structures with three glycan subtypes. Owing to the database-independent glycan mapping strategy, StrucGP also facilitates the identification of rare/new glycan structures. The approach will be greatly beneficial for in-depth structural and functional study of glycoproteins in the biomedical research.


Asunto(s)
Algoritmos , Glicopéptidos/análisis , Glicoproteínas/análisis , Polisacáridos/análisis , Animales , Glicopéptidos/química , Glicoproteínas/química , Glicosilación , Masculino , Ratones , Ratones Endogámicos C57BL , Polisacáridos/química
15.
J Neurol Neurosurg Psychiatry ; 95(5): 401-409, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918903

RESUMEN

BACKGROUND: Increasing evidence suggests the potential of Epstein-Barr virus (EBV) vaccination in preventing multiple sclerosis (MS). We aimed to explore the cost-effectiveness of a hypothetical EBV vaccination to prevent MS in an Australian setting. METHODS: A five-state Markov model was developed to simulate the incidence and subsequent progression of MS in a general Australian population. The model inputs were derived from published Australian sources. Hypothetical vaccination costs, efficacy and strategies were derived from literature. Total lifetime costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs) were estimated for two hypothetical prevention strategies versus no prevention from the societal and health system payer perspectives. Costs and QALYs were discounted at 5% annually. One-way, two-way and probabilistic sensitivity analyses were performed. RESULTS: From societal perspective, EBV vaccination targeted at aged 0 and aged 12 both dominated no prevention (ie, cost saving and increasing QALYs). However, vaccinating at age 12 was more cost-effective (total lifetime costs reduced by $A452/person, QALYs gained=0.007, ICER=-$A64 571/QALY gained) than vaccinating at age 0 (total lifetime costs reduced by $A40/person, QALYs gained=0.003, ICER=-$A13 333/QALY gained). The probabilities of being cost-effective under $A50 000/QALY gained threshold for vaccinating at ages 0 and 12 were 66% and 90%, respectively. From health system payer perspective, the EBV vaccination was cost-effective at age 12 only. Sensitivity analyses demonstrated the cost-effectiveness of EBV vaccination to prevent MS under a wide range of plausible scenarios. CONCLUSIONS: MS prevention using future EBV vaccinations, particularly targeted at adolescence population, is highly likely to be cost-effective.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Adolescente , Humanos , Niño , Recién Nacido , Análisis Costo-Beneficio , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/prevención & control , Esclerosis Múltiple/prevención & control , Australia , Vacunación , Años de Vida Ajustados por Calidad de Vida
16.
Chemistry ; 30(28): e202400012, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38477176

RESUMEN

Intermolecular interactions are critical to the crystallization of biomolecules, yet the precise control of biomolecular crystal growth based on these interactions remains elusive. To understand the connections between the crystallization kinetics and the strength of intermolecular interactions, herein we have employed DNA triangular crystals and modified ones as a versatile tool to investigate how the strength of intermolecular interaction affects crystal growth. Interestingly, we have found that the 2'-O-methylation at sticky ends of the DNA triangle could strengthen its intermolecular interaction, resulting in the accelerated formation of smaller crystals. Conversely, phosphorothioate modification could weaken the sticky-end cohesion and delay the nucleation, resulting in formation of fewer but larger crystals. In addition, these modification effects were consistently observed in the crystallization of a DNA decamer. In one word, our experimental results demonstrate that the strength of intermolecular interaction directly impacts crystal growth. It suggests that 2'-O-methylation and phosphorothioate modification represents a rational strategy for controlling DNA molecules grow into desired crystals and it also facilitates structural determination.


Asunto(s)
Cristalización , ADN , ADN/química , Cinética , Metilación , Conformación de Ácido Nucleico
17.
Chem Res Toxicol ; 37(5): 731-743, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38634348

RESUMEN

Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.


Asunto(s)
Acrilamida , Diabetes Mellitus Experimental , Estrés del Retículo Endoplásmico , Ratones Endogámicos BALB C , Animales , Femenino , Acrilamida/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Estrés Oxidativo/efectos de los fármacos
18.
FASEB J ; 37(1): e22712, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527439

RESUMEN

Mixed lineage leukemia 1 (MLL1), a histone H3 lysine 4 (H3K4) methyltransferase, exerts its enzymatic activity by interacting with menin and other proteins. It is unclear whether inhibition of the MLL1-menin interaction influences epithelial-mesenchymal transition (EMT), renal fibroblast activation, and renal fibrosis. In this study, we investigated the effect of disrupting MLL1-menin interaction on those events and mechanisms involved in a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO), in cultured mouse proximal tubular cells and renal interstitial fibroblasts. Injury to the kidney increased the expression of MLL1 and menin and H3K4 monomethylation (H3K4me1); MLL1 and menin were expressed in renal epithelial cells and renal interstitial fibroblasts. Inhibition of the MLL1-menin interaction by MI-503 administration or siRNA-mediated silencing of MLL1 attenuated UUO-induced renal fibrosis, and reduced expression of α-smooth muscle actin (α-SMA) and fibronectin. These treatments also inhibited UUO-induced expression of transcription factors Snail and Twist and transforming growth factor ß1 (TGF-ß1) while expression of E-cadherin was preserved. Moreover, treatment with MI-503 and transfection with either MLL siRNA or menin siRNA inhibited TGF-ß1-induced upregulation of α-SMA, fibronectin and Snail, phosphorylation of Smad3 and AKT, and downregulation of E-cadherin in cultured renal epithelial cells. Finally, MI-503 was effective in abrogating serum or TGFß1-induced transformation of renal interstitial fibroblasts to myofibroblasts in vitro. Taken together, these results suggest that targeting disruption of the MLL1-menin interaction attenuates renal fibrosis through inhibition of partial EMT and renal fibroblast activation.


Asunto(s)
Enfermedades Renales , Leucemia , Obstrucción Ureteral , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Fibronectinas/metabolismo , Fibrosis , Enfermedades Renales/etiología , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Obstrucción Ureteral/metabolismo , Riñón/metabolismo , Transición Epitelial-Mesenquimal , Cadherinas/metabolismo , ARN Interferente Pequeño/metabolismo
19.
Mult Scler ; 30(1): 80-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38116594

RESUMEN

BACKGROUND: The MS disease-modifying therapies (DMTs) prescribing landscape in Australia have changed over time. OBJECTIVES: This study evaluated the utilisation and cost trends of MS-related DMTs in Australia over 10 years and investigated differences between States/Territories. METHODS: The prescription and costs of 16 DMTs were extracted from the Pharmaceutical Benefits Scheme for 2013-2022. Descriptive approaches analysed the total number of people prescribed DMTs and total DMT costs per 10,000 population, proportions of prescriptions/costs by DMT groups and the number of people prescribed each individual DMT and costs of each DMT over the 10-year period. All estimates were for Australia and each State/Territory individually. RESULTS: The number of people prescribed DMT and costs per 10,000 population had substantial growth between 2013 and 2022: 125%/164% for Australia, and 94%-251%/129%-373% for individual States/Territories. Higher efficacy group accounted for 54% of total people prescribed DMTs in 2013 and 75% in 2022. Fingolimod was the most popular DMT until 2020, then was dominated by ocrelizumab. The trends of individual DMT prescriptions and costs differed between states particularly in Western Australia (WA), Tasmania and Northern Territory (NT). CONCLUSION: DMT prescriptions and costs continuously increased over the last decade, particularly for higher efficacy DMTs, and their trends differed between States/Territories.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/epidemiología , Clorhidrato de Fingolimod , Australia
20.
Ann Hematol ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441597

RESUMEN

The application of tyrosine kinase inhibitors (TKIs) and novel immunotherapies has improved outcomes in patients with Ph + acute lymphoblastic leukaemia (ALL), and the issue of whether there is still a need for stem cell transplantation has become controversial. We performed a retrospective study to explore whether stem cell transplantation still held a place in patients with Ph + ALL if only imatinib and 2nd generation TKIs are available and affordable. A total of 292 patients were included. The median age was 38 years [range 14-64, IQR 28-48]. Patients receiving transplants (n = 216) had better rates of 4-year disease-free survival (DFS, 68% vs. 24%, P < .0001) and overall survival (OS, 72% vs. 47%, P < .0001) than those receiving continuous TKIs plus chemotherapy (TKI-chemo) (n = 76). In the multivariate analysis, male sex, WBC count ≥ 95 × 109/L and PLT count ≤ 154 × 109/L at diagnosis were significantly associated with poorer outcomes, and transplantation was significantly associated with favourable DFS and OS. In addition, the transplant outcomes were superior in any subgroup according to the number of risk variables. Furthermore, propensity score matching (PSM) analyses showed similar findings in the whole cohort and in age- and BCR-ABL1 level-based subgroups after the first or second consolidation. In conclusion, transplantation as a one-time procedure for adults with Ph + ALL patients remains important in countries lacking accessibility to third-generation TKIs or immunotherapies, regardless of the depth of the molecular response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA