Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 856
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35447074

RESUMEN

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Inmunosupresores/uso terapéutico , Inmunoterapia , Recurrencia Local de Neoplasia , Linfocitos T/patología , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
2.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31866069

RESUMEN

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Asunto(s)
Células Madre Adultas/metabolismo , Fibrosis Pulmonar Idiopática/etiología , Alveolos Pulmonares/metabolismo , Células Madre Adultas/patología , Anciano , Células Epiteliales Alveolares/patología , Animales , Fenómenos Biomecánicos/fisiología , Femenino , Fibrosis/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Alveolos Pulmonares/patología , Regeneración , Transducción de Señal , Células Madre/patología , Estrés Mecánico , Estrés Fisiológico/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
4.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572957

RESUMEN

The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.


Asunto(s)
Ovario , Espermatozoides , Animales , Masculino , Femenino , Espermatozoides/metabolismo , Ovario/metabolismo , Fertilización , Viviparidad de Animales no Mamíferos , Proteómica , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Peces/metabolismo , Microambiente Celular , Multiómica
5.
Cell ; 148(1-2): 244-58, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265415

RESUMEN

p53 is a frequent target for mutation in human tumors, and mutant p53 proteins can actively contribute to tumorigenesis. We employed a three-dimensional culture model in which nonmalignant breast epithelial cells form spheroids reminiscent of acinar structures found in vivo, whereas breast cancer cells display highly disorganized morphology. We found that mutant p53 depletion is sufficient to phenotypically revert breast cancer cells to a more acinar-like morphology. Genome-wide expression analysis identified the mevalonate pathway as significantly upregulated by mutant p53. Statins and sterol biosynthesis intermediates reveal that this pathway is both necessary and sufficient for the phenotypic effects of mutant p53 on breast tissue architecture. Mutant p53 associates with sterol gene promoters at least partly via SREBP transcription factors. Finally, p53 mutation correlates with highly expressed sterol biosynthesis genes in human breast tumors. These findings implicate the mevalonate pathway as a therapeutic target for tumors bearing mutations in p53.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ácido Mevalónico/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Mutación , Prenilación , Regiones Promotoras Genéticas , Simvastatina/farmacología , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
6.
Blood ; 144(7): 757-770, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701407

RESUMEN

ABSTRACT: Glucocorticoids are key components of the standard-of-care treatment regimens for B-cell malignancy. However, systemic glucocorticoid treatment is associated with several adverse events. ABBV-319 is a CD19-targeting antibody-drug conjugate engineered to reduce glucocorticoid-associated toxicities while possessing 3 distinct mechanisms of action (MOA) to increase therapeutic efficacy: (1) antibody-mediated delivery of a glucocorticoid receptor modulator (GRM) payload to activate apoptosis, (2) inhibition of CD19 signaling, and (3) enhanced fragment crystallizable (Fc)-mediated effector function via afucosylation of the antibody backbone. ABBV-319 elicited potent GRM-driven antitumor activity against multiple malignant B-cell lines in vitro, as well as in cell line-derived xenografts and patient-derived xenografts (PDXs) in vivo. Remarkably, a single dose of ABBV-319 induced sustained tumor regression and enhanced antitumor activity compared with repeated dosing of systemic prednisolone at the maximum tolerated dose in mice. The unconjugated CD19 monoclonal antibody (mAb) also displayed antiproliferative activity in a subset of B-cell lymphoma cell lines through the inhibition of phosphoinositide 3-kinase signaling. Moreover, afucosylation of CD19 mAb enhanced Fc-mediated antibody-dependent cellular cytotoxicity. Notably, ABBV-319 displayed superior efficacy compared with afucosylated CD19 mAb in human CD34+ peripheral blood mononuclear cell-engrafted NSG-Tg(Hu-IL15) transgenic mice, demonstrating enhanced antitumor activity when multiple MOAs are enabled. ABBV-319 also showed durable antitumor activity across multiple B-cell lymphoma PDX models, including nongerminal center B-cell diffuse large B-cell lymphoma and relapsed lymphoma after R-CHOP treatment. Collectively, these data support the ongoing evaluation of ABBV-319 in a phase 1 clinical trial.


Asunto(s)
Antígenos CD19 , Inmunoconjugados , Receptores de Glucocorticoides , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Antígenos CD19/inmunología , Ratones , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Receptores de Glucocorticoides/antagonistas & inhibidores , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/patología , Línea Celular Tumoral , Ratones SCID , Femenino , Maitansina/análogos & derivados
7.
J Immunol ; 213(5): 743-752, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39058321

RESUMEN

IFN regulatory factors (IRFs) are transcription factors that mediate homeostatic mechanisms of host defense against pathogens. In addition to IRF1-9, which are conserved across vertebrates, teleost fishes have two other IRFs, IRF10 and IRF11. In zebrafish (Danio rerio), IRF10 represses the expression of IFNφ1 and IFNφ3, whereas IRF11 exerts the opposite effect. In this study, we found IRF10 could significantly inhibit the expression of IFNφ1 and IFNφ3 induced by IFN11 to synergistically regulate type I IFN expression. To clarify the synergistically regulatory mechanism of IRF10 and IRF11 in type I IFN expression, we determined and analyzed the crystal structures of the DNA-binding domains (DBDs) of zebrafish IRF10 and IRF11 bound to DNA, as well as IRF11 DBD in apo form. The interactions of IRF10-DBD and IRF11-DBD with DNA backbone were elaborated in detail. Further analysis showed that IRF10 and IRF11 have the same binding patterns and comparable affinities with the IFN-sensitive response elements of IFNφ1 and IFNφ3 promoters. Therefore, IRF10 could function as a controlling factor for IRF11 by competitive binding of the IFN-sensitive response elements to coregulate the host IFN response. Accordingly, similar to IRF1 and IRF2 in mammals, IRF10 and IRF11 act as another pair of negative and positive regulators to balance the antiviral responses in fish.


Asunto(s)
ADN , Factores Reguladores del Interferón , Pez Cebra , Animales , Pez Cebra/inmunología , ADN/inmunología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Cristalografía por Rayos X , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Unión Proteica , Regulación de la Expresión Génica , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Interferones/metabolismo , Interferones/inmunología
8.
Biochemistry ; 63(9): 1225-1233, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38682295

RESUMEN

As plant photoreceptors, phytochromes are capable of detecting red light and far-red light, thereby governing plant growth. All2699 is a photoreceptor found in Nostoc sp. PCC7120 that specifically responds to red light and far-red light. All2699g1g2 is a truncated protein carrying the first and second GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains of All2699. In this study, we found that, upon exposure to red light, the protein underwent aggregation, resulting in the formation of protein aggregates. Conversely, under far-red light irradiation, these protein aggregates dissociated. We delved into the factors that impact the aggregation of All2699g1g2, focusing on the protein structure. Our findings showed that the GAF2 domain contains a low-complexity (LC) loop region, which plays a crucial role in mediating protein aggregation. Specifically, phenylalanine at position 239 within the LC loop region was identified as a key site for the aggregation process. Furthermore, our research revealed that various factors, including irradiation time, temperature, concentration, NaCl concentration, and pH value, can impact the aggregation of All2699g1g2. The aggregation led to variations in Pfr concentration depending on temperature, NaCl concentration, and pH value. In contrast, ΔLC did not aggregate and therefore lacked responses to these factors. Consequently, the LC loop region of All2699g1g2 extended and enhanced sensory properties.


Asunto(s)
Proteínas Bacterianas , Luz , Nostoc , Nostoc/metabolismo , Nostoc/química , Nostoc/efectos de la radiación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Agregado de Proteínas , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Concentración de Iones de Hidrógeno , Fitocromo/química , Fitocromo/metabolismo
9.
J Am Chem Soc ; 146(18): 12485-12495, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651836

RESUMEN

Understanding the mechanisms of C-H activation of alkanes is a very important research topic. The reactions of metal clusters with alkanes have been extensively studied to reveal the electronic features governing C-H activation, while the experimental cluster reactivity was qualitatively interpreted case by case in the literature. Herein, we prepared and mass-selected over 100 rhodium-based clusters (RhxVyOz- and RhxCoyOz-) to react with light alkanes, enabling the determination of reaction rate constants spanning six orders of magnitude. A satisfactory model being able to quantitatively describe the rate data in terms of multiple cluster electronic features (average electron occupancy of valence s orbitals, the minimum natural charge on the metal atom, cluster polarizability, and energy gap involved in the agostic interaction) has been constructed through a machine learning approach. This study demonstrates that the general mechanisms governing the very important process of C-H activation by diverse metal centers can be discovered by interpreting experimental data with artificial intelligence.

10.
Biochem Biophys Res Commun ; 711: 149906, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38640879

RESUMEN

Cardiovascular diseases (CVD) represent one of the most considerable global health threats, owing to their high incidence and mortality rates. Despite the ongoing advancements in detection, prevention, treatment, and prognosis of CVD, which have resulted in a decline in both incidence and mortality rates, CVD remains a major public health concern. Therefore, novel diagnostic biomarkers and therapeutic interventions are imperative to minimise the risk of CVD. Non-coding RNAs (ncRNAs) have recently gained increasing attention, with PIWI-interacting RNAs (piRNAs) emerging as a class of small ncRNAs traditionally recognised for their role in silencing transposons within cells. Although the functional roles of PIWI proteins and piRNAs in human cells remain unclear, growing evidence suggests that these molecules are gradually becoming valuable biomarkers for the diagnosis and treatment of CVD. This review provides a comprehensive summary of the latest studies on piRNAs in CVD. This review discusses the roles of piRNAs in various cardiovascular subtypes, including myocardial hypertrophy, heart failure, myocardial infarction, and cardiac regeneration. The perceived insights may contribute novel perspectives for the diagnosis and treatment of CVD.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , ARN Interferente Pequeño , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/diagnóstico , Biomarcadores/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Animales , ARN de Interacción con Piwi
11.
Biochem Biophys Res Commun ; 733: 150350, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39053107

RESUMEN

Postovulatory aging of oocytes involves a series of deleterious molecular and cellular changes, which adversely affect oocyte maturation, fertilization, and early embryonic development. Petunidin-3-O-(6-O-pcoumaroyl)-rutinoside-5-O-glucoside (PrG), the main active ingredient of anthocyanin, exerts antioxidant effects. This study investigated whether PrG supplementation could delay postovulatory oocyte aging by alleviating oxidative stress. Our results showed that PrG supplementation decreased the number of abnormal morphology oocytes and improved the oxidative stress of aged oocytes by facilitating the reduction of the reactive oxygen species, the increase in glutathione content, and the recovery of expression of antioxidant-related gene expression. In addition, PrG treatment recovered mitochondrial dysfunction, including mitochondrial distribution, mitochondrial membrane potential and adenosine triphosphate in aged oocytes. PrG-treated oocytes returned to normal levels of cytoplasmic and mitochondrial calcium. Notably, PrG inhibited early apoptosis in aged oocytes. RNA-seq and qRT-PCR results revealed that PrG ameliorated oxidative stress injury in postovulatory aging oocytes of mice via the putrescine pathway. In conclusion, in vitro PrG supplementation is a potential therapy for delaying postovulatory oocyte aging.


Asunto(s)
Senescencia Celular , Oocitos , Estrés Oxidativo , Putrescina , Animales , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Putrescina/metabolismo , Putrescina/farmacología , Ratones , Femenino , Estrés Oxidativo/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ovulación/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Glucósidos/farmacología
12.
Small ; 20(44): e2404347, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38958084

RESUMEN

Solar-driven interfacial evaporation is an efficient method for purifying contaminated or saline water. Nonetheless, the suboptimal design of the structure and composition still necessitates a compromise between evaporation rate and service life. Therefore, achieving efficient production of clean water remains a key challenge. Here, a biomimetic dictyophora hydrogel based on loofah/carbonized sucrose@ZIF-8/polyvinyl alcohol is demonstrated, which can serve as an independent solar evaporator for clean water recovery. This special structural design achieves effective thermal positioning and minimal heat loss, while reducing the actual enthalpy of water evaporation. The evaporator achieves a pure water evaporation rate of 3.88 kg m-2 h-1 and a solar-vapor conversion efficiency of 97.16% under 1 sun irradiation. In comparison, the wastewater evaporation rate of the evaporator with ZIF-8 remains at 3.85 kg m-2 h-1 for 30 days, which is 16.3% higher than the light irradiation without ZIF-8. Equally important, the evaporator also showcases the capability to cleanse water from diverse sources of contaminants, including those with small molecules, oil, heavy metal ions, and bacteria, greatly improving the lifespan of the evaporator.

13.
Small ; 20(14): e2306402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37992239

RESUMEN

Photodynamic therapy (PDT) is extensively investigated for tumor therapy in the clinic. However, the efficacy of PDT is severely limited by the tissue penetrability of light, short effective half-life and radius of reactive oxygen species (ROS), and the weak immunostimulatory effect. In this study, a glutathione (GSH)-activatable nano-photosensitizer is developed to load with arachidonic acid (AA) and camouflage by erythrocyte membrane, which serves as a laser-ignited lipid peroxidation nanoamplifier (MAR). The photosensitive effect of MAR is recovered accompanied by the degradation in the tumor microenvironment and triggers the peroxidation of AA upon laser excitation. Interestingly, it aggravates the propagation of ferroptosis among cancer cells by driving the continuous lipid peroxidation chain reactions with the participation of the degradation products, ferrous ions (Fe2+), and AA. Consequently, even the deep-seated tumor cells without illumination also undergo ferroptosis owing to the propagation of ferroptotic signal. Moreover, the residual tumor cells undergoing ferroptosis still maintain high immunogenicity after PDT, thus continuously triggering sufficient tumor-associated antigens (TAAs) release to remarkably promote the anti-tumor immune response. Therefore, this study will provide a novel "all-in-one" nano-photosensitizer that not only amplifies the damaging effect and expands the effective range of PDT but also improves the immunostimulatory effect after PDT.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Peroxidación de Lípido , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Línea Celular Tumoral
14.
Biol Reprod ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361887

RESUMEN

Environmental hypoxia adversely impacts the reproduction of humans and animals. Previously, we showed that fetal hypoxia exposure led to granulosa cell (GC) autophagic cell death via the Foxo1/Pi3k/Akt pathway. However, the upstream regulatory mechanisms underlying GC dysfunction remain largely unexplored. Here, we tested the hypothesis that fetal hypoxia exposure altered gene expression programs in adult GCs and impaired ovarian function. We established a fetal hypoxia model in which pregnant mice were maintained in a high-plateau hypoxic environment from gestation day (E) 0--16.5 to study the impact of hypoxia exposure on the ovarian development and subsequent fertility of offspring. Compared with the unexposed control, fetal hypoxia impaired fertility by disordering ovarian function. Specifically, fetal hypoxia caused mitochondrial dysfunction, oxidant stress and autophagy in GCs in the adult ovary. RNA-seq analysis revealed that 437 genes were differentially expressed in the adult GCs of exposed animals. Western blotting results also revealed that fetal exposure induced high levels of hypoxia-inducible factor 1-alpha (Hif1a) expression in adult GCs. We then treated GCs isolated from exposed mice with PX-478, a specific pharmacological inhibitor of Hif-1a, and found that autophagy and apoptosis were effectively alleviated. Finally, by using a human ovarian granulosa-like tumor cell line (KGN) to simulate hypoxia in vitro, we showed that Hif1a regulated autophagic cell death in GCs through the Pi3k/Akt pathway. Together, these findings suggest that fetal hypoxia exposure induced persistent Hif1a expression, which impaired mitochondrial function and led to autophagic cell death in the GCs of the adult ovary.

15.
J Virol ; 97(4): e0182922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943056

RESUMEN

Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.


Asunto(s)
Modelos Moleculares , Rhabdoviridae , Ribonucleoproteínas , Proteínas Virales , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Rhabdoviridae/química , Rhabdoviridae/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo , Estructura Cuaternaria de Proteína , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Microscopía por Crioelectrón , Suramina/farmacología
16.
Cardiovasc Diabetol ; 23(1): 243, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987779

RESUMEN

BACKGROUND: The prevalence of obesity-associated insulin resistance (IR) is increasing along with the increase in obesity rates. In this study, we compared the predictive utility of four alternative indexes of IR [triglyceride glucose index (TyG index), metabolic score for insulin resistance (METS-IR), the triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio and homeostatic model assessment of insulin resistance (HOMA-IR)] for all-cause mortality and cardiovascular mortality in the general population based on key variables screened by the Boruta algorithm. The aim was to find the best replacement index of IR. METHODS: In this study, 14,653 participants were screened from the National Health and Nutrition Examination Survey (2001-2018). And TyG index, METS-IR, TG/HDL-C and HOMA-IR were calculated separately for each participant according to the given formula. The predictive values of IR replacement indexes for all-cause mortality and cardiovascular mortality in the general population were assessed. RESULTS: Over a median follow-up period of 116 months, a total of 2085 (10.23%) all-cause deaths and 549 (2.61%) cardiovascular disease (CVD) related deaths were recorded. Multivariate Cox regression and restricted cubic splines analysis showed that among the four indexes, only METS-IR was significantly associated with both all-cause and CVD mortality, and both showed non-linear associations with an approximate "U-shape". Specifically, baseline METS-IR lower than the inflection point (41.33) was negatively associated with mortality [hazard ratio (HR) 0.972, 95% CI 0.950-0.997 for all-cause mortality]. In contrast, baseline METS-IR higher than the inflection point (41.33) was positively associated with mortality (HR 1.019, 95% CI 1.011-1.026 for all-cause mortality and HR 1.028, 95% CI 1.014-1.043 for CVD mortality). We further stratified the METS-IR and showed that significant associations between METS-IR levels and all-cause and cardiovascular mortality were predominantly present in the nonelderly population aged < 65 years. CONCLUSIONS: In conjunction with the results of the Boruta algorithm, METS-IR demonstrated a more significant association with all-cause and cardiovascular mortality in the U.S. population compared to the other three alternative IR indexes (TyG index, TG/HDL-C and HOMA-IR), particularly evident in individuals under 65 years old.


Asunto(s)
Biomarcadores , Glucemia , Enfermedades Cardiovasculares , Causas de Muerte , Resistencia a la Insulina , Síndrome Metabólico , Encuestas Nutricionales , Valor Predictivo de las Pruebas , Triglicéridos , Humanos , Masculino , Femenino , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/sangre , Persona de Mediana Edad , Medición de Riesgo , Adulto , Estados Unidos/epidemiología , Biomarcadores/sangre , Anciano , Triglicéridos/sangre , Pronóstico , Glucemia/metabolismo , Factores de Tiempo , Síndrome Metabólico/mortalidad , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/sangre , Síndrome Metabólico/epidemiología , HDL-Colesterol/sangre , Insulina/sangre , Factores de Riesgo de Enfermedad Cardiaca , Factores de Riesgo
17.
Toxicol Appl Pharmacol ; 491: 117066, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128506

RESUMEN

Paclitaxel (PTX) is a microtubule stabilizer that disrupts the normal cycle of microtubule depolymerization and repolymerization, leading to cell cycle arrest and cancer cell death. It is commonly used as a first-line chemotherapeutics for various malignancies, such as breast cancer, non-small cell lung cancer, and ovarian cancer. However, PTX chemotherapy is associated with common and serious side effects, including chemotherapy-induced peripheral neuropathy (CIPN). As cancer treatment advances and survival rates increase, the impact of CIPN on patients' quality of life has become more significant. To date, there is no effective treatment strategy for CIPN. Surtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent protein deacetylase located on mitochondria. It transfers the acetyl group of the lysine side chain of acetylated substrate proteins to NAD+, producing deacetylated proteins to regulate mitochondrial energy metabolic processes. SIRT3 has been found to play an important role in various diseases, including aging, neurodegenerative diseases, cancer, heart disease, metabolic diseases, etc. However, the role of SIRT3 in CIPN is still unknown. This study found for the first time that activating SIRT3 helps to improve paclitaxel-induced CIPN. Nicotinamide riboside (NR) can protect dorsal root ganglion (DRG) mitochondria against oxidative damage caused by paclitaxel through activating SIRT3-MnSOD2 and SIRT3-Nrf2 pathway. Moreover, NR can enhance the anticancer activity of paclitaxel. Together, our research provides new strategy and candidate drug for the treatment of CIPN.


Asunto(s)
Niacinamida , Paclitaxel , Enfermedades del Sistema Nervioso Periférico , Compuestos de Piridinio , Sirtuina 3 , Paclitaxel/toxicidad , Sirtuina 3/metabolismo , Animales , Compuestos de Piridinio/farmacología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/prevención & control , Enfermedades del Sistema Nervioso Periférico/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/toxicidad , Ratones , Humanos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino
18.
Chemistry ; : e202402695, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39404653

RESUMEN

The activation of N2 under mild conditions remains a significant challenge in chemistry. Understanding how the composition of ligands modulates the reactivity of metal centers is pivotal for the rational design of efficient catalysts for nitrogen fixation. Herein, the reactions between polynuclear niobium oxynitride anions Nb4N5-xOx- (x = 0-5) and N2 were investigated by employing mass spectrometry, photoelectron imaging spectroscopy, and theoretical calculations. The rate constants of Nb4N5-xOx-/N2 gradually decrease for x = 0 to x = 4, and then increase again for x = 5. The sharp increase of the rate constants of Nb4O5-/N2 corresponds to a decrease in the electron detachment energy of the Nb4O5- cluster in the photoelectron spectroscopic experiment. Theoretical calculations suggest that the low-coordinated Nb-Nb site in Nb4N5-xOx- (x = 0-5) behaves as the active center to bind N2 in the side-on/end-on manner. Mechanistic analysis reveals that raising the O/N ratio leads to higher electron densities on the active Nb-Nb center and decreased positive charge on the metal atoms, which hinders the approach of N2 to the clusters. This finding discloses fundamental insights into the impact of N/O ratios in fine-tuning the reactivity of metal centers towards N2 adsorption in related catalytic processes.

19.
Biotechnol Bioeng ; 121(5): 1674-1687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372655

RESUMEN

Hollow fiber filter fouling is a common issue plaguing perfusion production process for biologics therapeutics, but the nature of filter foulant has been elusive. Here we studied cell culture materials especially Chinese hamster ovary (CHO) cell-derived extracellular vesicles in perfusion process to determine their role in filter fouling. We found that the decrease of CHO-derived small extracellular vesicles (sEVs) with 50-200 nm in diameter in perfusion permeates always preceded the increase in transmembrane pressure (TMP) and subsequent decrease in product sieving, suggesting that sEVs might have been retained inside filters and contributed to filter fouling. Using scanning electron microscopy and helium ion microscopy, we found sEV-like structures in pores and on foulant patches of hollow fiber tangential flow filtration filter (HF-TFF) membranes. We also observed that the Day 28 TMP of perfusion culture correlated positively with the percentage of foulant patch areas. In addition, energy dispersive X-ray spectroscopy-based elemental mapping microscopy and spectroscopy analysis suggests that foulant patches had enriched cellular materials but not antifoam. Fluorescent staining results further indicate that these cellular materials could be DNA, proteins, and even adherent CHO cells. Lastly, in a small-scale HF-TFF model, addition of CHO-specific sEVs in CHO culture simulated filter fouling behaviors in a concentration-dependent manner. Based on these results, we proposed a mechanism of HF-TFF fouling, in which filter pore constriction by CHO sEVs is followed by cake formation of cellular materials on filter membrane.


Asunto(s)
Anticuerpos Monoclonales , Filtración , Cricetinae , Animales , Cricetulus , Células CHO , Perfusión , Filtración/métodos , Reactores Biológicos , Membranas Artificiales
20.
Langmuir ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39437421

RESUMEN

Driven by renewable energy, using electrocatalysis to reduce carbon dioxide (CO2) to chemicals is a key technology. It could dim global carbon emissions and promote the carbon cycle. Here, we reported an approach to prepare a Br-doped Bi nanosphere (Br-doped Bi NSP) catalyst for the preparation of formate by electrochemical conversion of CO2. The synthesized Br-doped Bi NSP catalyst manifests high selectivity toward HCOOH. At the applied potential of -0.9 V versus reversible hydrogen electrode, it could achieve a maximum FEHCOOH of 98%. It can remain constant, and the degradation is negligible in continuous electrolysis for 9 h. The excellent CO2 reduction performance is due to the electron richness at the surface of Br-doped Bi NSP induced by the electron transfer between Bi and Br. Density functional theory calculations and in situ attenuated total reflectance-Fourier transform infrared measurements were used to predict the underlying catalyst action's pathway. It can be concluded that the introduction of Br is advantageous to the *OCHO formation, which is conducive to the reduction of the determination step. This research could provide a meaningful view into anion-doping effects to enable effiective electrocatalytic material that selectively reduces carbon dioxide into valuable products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA