Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858407

RESUMEN

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Interacciones Huésped-Patógeno , Terapia Molecular Dirigida , Procesamiento Proteico-Postraduccional , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/virología , Células CACO-2 , Exorribonucleasas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Sirtuinas/metabolismo , Succinatos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
Hepatology ; 78(5): 1433-1447, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800849

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis is a leading indicator for increased mortality and long-term comorbidity in NASH. Activation of HSCs and excessive extracellular matrix production are the hallmarks of liver fibrogenesis. Tyrosine kinase receptor (TrkB) is a multifunctional receptor that participates in neurodegenerative disorders. However, paucity of literature is available about TrkB function in liver fibrosis. Herein, the regulatory network and therapeutic potential of TrkB were explored in the progression of hepatic fibrosis. METHODS AND RESULTS: The protein level of TrkB was decreased in mouse models of CDAHFD feeding or carbon tetrachloride-induced hepatic fibrosis. TrkB suppressed TGF-ß-stimulated proliferation and activation of HSCs in 3-dimensional liver spheroids and significantly repressed TGF-ß/SMAD signaling pathway either in HSCs or in hepatocytes. The cytokine, TGF-ß, boosted Nedd4 family interacting protein-1 (Ndfip1) expression, promoting the ubiquitination and degradation of TrkB through E3 ligase Nedd4-2. Moreover, carbon tetrachloride intoxication-induced hepatic fibrosis in mouse models was reduced by adeno-associated virus vector serotype 6 (AAV6)-mediated TrkB overexpression in HSCs. In addition, in murine models of CDAHFD feeding and Gubra-Amylin NASH (GAN), fibrogenesis was reduced by adeno-associated virus vector serotype 8 (AAV8)-mediated TrkB overexpression in hepatocytes. CONCLUSION: TGF-ß stimulated TrkB degradation through E3 ligase Nedd4-2 in HSCs. TrkB overexpression inhibited the activation of TGF-ß/SMAD signaling and alleviated the hepatic fibrosis both in vitro and in vivo . These findings demonstrate that TrkB could be a significant suppressor of hepatic fibrosis and confer a potential therapeutic target in hepatic fibrosis.


Asunto(s)
Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Factor de Crecimiento Transformador beta , Animales , Ratones , Tetracloruro de Carbono , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Tirosina Quinasas Receptoras , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo
3.
J Nanobiotechnology ; 22(1): 392, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965606

RESUMEN

Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.


Asunto(s)
Aptámeros de Nucleótidos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores de Transferrina , Animales , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Receptores de Transferrina/metabolismo , Ratones , Línea Celular Tumoral , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proliferación Celular/efectos de los fármacos , Terapia Genética/métodos , ARN Interferente Pequeño/farmacología , Ratones Desnudos
4.
Angew Chem Int Ed Engl ; : e202402318, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710653

RESUMEN

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. In this study, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized through a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which extends our understanding of DIET and opens up new avenues for DIET exploration and applications.

5.
J Am Chem Soc ; 145(30): 16517-16525, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467341

RESUMEN

High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of the molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle "Like dissolves like," we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electronic properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production.

6.
J Appl Microbiol ; 134(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37113029

RESUMEN

AIMS: The main purpose of this study was to study the therapeutical effect of oroxylin A glucuronide (OAG) on methicillin-resistant Staphylococcus aureus (MRSA). METHODS AND RESULTS: By substrate peptide reaction-based fluorescence resonance energy transfer (FRET) screening, we identified that OAG was an efficient inhibitor of Sortase A (SrtA) with an IC50 of 45.61 µg mL-1, and achieved efficacy in the treatment of Staphylococcus aureus (S. aureus) infections. We further demonstrated that OAG inhibited the adhesion of the S. aureus to fibrinogen, the surface protein A anchoring and diminished biofilm formation. Results obtained from fluorescence quenching assay elucidated a direct interaction between OAG and SrtA. Employing molecular dynamics simulations, we proved that OAG binds to the binding sites of R197, G192, E105, and V168 in the SrtA. Notably, OAG exhibited a robust therapeutic effect in a MRSA-induced pneumonia model. CONCLUSIONS: We identified that OAG as a novel class of reversible inhibitors of SrtA, combats MRSA-induced Infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus , Glucurónidos/farmacología , Proteínas Bacterianas/metabolismo
7.
Antimicrob Agents Chemother ; 66(6): e0022422, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35652646

RESUMEN

Antimicrobial resistance (AMR) poses a major threat to human health globally. Staphylococcus aureus is recognized as a cause of disease worldwide, especially methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA). The enzyme sortase A (SrtA), present on the cell surface of S. aureus, plays a key role in bacterial virulence without affecting the bacterial viability, and SrtA-deficient S. aureus strains do not affect the growth of bacteria. Here, we found that punicalagin, a natural compound, was able to inhibit SrtA activity with a very low half maximal inhibitory concentration (IC50) value of 4.23 µg/mL, and punicalagin is a reversible inhibitor of SrtA. Moreover, punicalagin has no distinct cytotoxicity toward A549, HEK293T, or HepG2 cells at a much higher concentration than the IC50 detected by MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assays. In addition, punicalagin visibly attenuated the virulence-related phenotype of SrtA in vitro by decreasing adhesion of S. aureus to fibrinogen, reducing the ability of protein A (SpA) displayed on the surface of the bacteria and biofilm formation. Fluorescence quenching elucidated the interaction between punicalagin and SrtA. Molecular docking further implied that the inhibitory activity lay in the bond between punicalagin and SrtA residues LYS190, TYR187, ALA104, and GLU106. In In vivo studies, we surprisingly found that punicalagin had a more effective curative effect combined with cefotaxime when mice were infected with pneumonia caused by MRSA. Essentially, punicalagin, a therapeutic compound targeting SrtA, demonstrates great potential for combating MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Aminoaciltransferasas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Cisteína Endopeptidasas , Células HEK293 , Humanos , Taninos Hidrolizables , Ratones , Simulación del Acoplamiento Molecular , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
8.
Antimicrob Agents Chemother ; 66(8): e0024022, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35862746

RESUMEN

Drug-resistant bacteria was the third leading cause of death worldwide in 2019, which sounds like a cautionary note for global public health. Therefore, developing novel strategies to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections is the need of the hour. Caseinolytic protease P (ClpP) represents pivotal microbial degradation machinery in MRSA involved in bacterial homeostasis and pathogenicity, considered an ideal target for combating S. aureus infections. Herein, we identified a natural compound, hinokiflavone, that inhibited the activity of ClpP of MRSA strain USA300 with an IC50 of 34.36 µg/mL. Further assays showed that hinokiflavone reduced the virulence of S. aureus by inhibiting multiple virulence factors expression. Results obtained from cellular thermal transfer assay (CETSA), thermal shift assay (TSA), local surface plasmon resonance (LSPR) and molecular docking (MD) assay enunciated that hinokiflavone directly bonded to ClpP with confirmed docking sites, including SER-22, LYS-26 and ARG-28. In vivo, the evaluation of anti-infective activity showed that hinokiflavone in combination with vancomycin effectively protected mice from MRSA-induced fatal pneumonia, which was more potent than vancomycin alone. As mentioned above, hinokiflavone, as an inhibitor of ClpP, could be further developed into a promising adjuvant against S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Biflavonoides , Ratones , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Vancomicina/farmacología , Virulencia
9.
Microb Pathog ; 162: 105336, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34856361

RESUMEN

Staphylococcus aureus (S. aureus) is a common pathogenic bacterium that induces a variety of diseases in humans and animals. The significant pathogenicity of S. aureus is due to its expression of several virulence factors. Alpha-hemolysin (Hla) has attracted attention as a virulence factor in staphylococcal pathogenesis and has been the predominant focus of intense research. In this study, we found that kaempferol, a flavonoid compound, inhibited hemolysis at a low concentration (32 µg/mL) and exerted no effect on bacterial growth. Western blot and RT-qPCR assays further demonstrated that kaempferol downregulated the expression of Hla in S. aureus. We observed that kaempferol alleviated the damage from S. aureus Hla in A549 cells. More importantly, kaempferol showed a potent protective effect on mice pneumonia induced by MRSA, as evidenced by a significant improvement in the survival of mice, a reduction in the number of colonized colonies in lung tissue and a decrease in the pathological damage to lung tissues. In summary, the results demonstrate the protective effect of kaempferol on MRSA-induced lethal pneumonia in mice and indicate that kaempferol could be developed as a potential anti-MRSA drug.


Asunto(s)
Toxinas Bacterianas , Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Animales , Antibacterianos , Proteínas Hemolisinas , Quempferoles/farmacología , Ratones , Neumonía Estafilocócica/tratamiento farmacológico , Staphylococcus aureus
10.
J Nat Prod ; 85(8): 1936-1944, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35833867

RESUMEN

Staphylococcus aureus, especially drug-resistant S. aureus infections, is a worldwide healthcare challenge. There is a growing focus on antivirulence therapy against S. aureus. Caseinolytic protease p (ClpP) is a protein hydrolase essential for pathogenicity in S. aureus. A flavonoid compound, tamarixetin, which was screened in this work, was specifically able to inhibit the hydrolytic activity of ClpP on the fluorescent substrate Suc-LY-AMC with an IC50 of 49.73 µM, without affecting the growth of methicillin-resistant S. aureus strain USA300 and was without obvious cytotoxicity. Further assays found that tamarixetin inhibited the transcription of hla, agr, RNAIII, pvl, PSM-α, and spa genes as well as suppressed the protein expression levels of Hla and PVL. Moreover, tamarixetin was observed to dramatically inhibit the hemolytic activity of hla in S. aureus. Consistent with that of S. aureus USA300-ΔclpP, tamarixetin was shown to increase urease expression. The thermal shift and cellular thermal shift assays showed that tamarixetin markedly changed the thermal stability of ClpP. The dissociation constant (KD) value of tamarixetin with ClpP was 2.52 × 10-6 M measured by surface plasmon resonance. The molecular docking and ClpP point mutation results also demonstrated that tamarixetin had a strong interaction with ClpP. In vivo study showed that tamarixetin was effective in protecting mice from S. aureus pneumonia by increasing survival, reducing lung tissue load, and slowing down the infiltration of inflammatory factors. In addition, tamarixetin was able to enhance the antibacterial activity of cefotaxime in combination. In conclusion, tamarixetin was promising as a ClpP inhibitor for S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Proteínas Bacterianas/genética , Disacáridos , Ratones , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Quercetina/análogos & derivados , Staphylococcus aureus , Virulencia , Factores de Virulencia/genética
11.
J Nanobiotechnology ; 20(1): 188, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413984

RESUMEN

BACKGROUND: Calcium ions (Ca2+) participates in various intracellular signal cascades and especially plays a key role in pathways relevant to cancer cells. Mitochondrial metabolism stimulated by calcium overload can trigger the opening of the mitochondrial permeability transition pore (MPTP), which leads to cancer cell death. METHODS: Herein, a mitochondrial pathway for tumour growth inhibition was built via the double-activation of MPTP channel. Fe2+ doped covalent organic frameworks (COF) was synthesised and applied as template to grow CaCO3 shell. Then O2 was storaged into Fe2+ doped COF, forming O2-FeCOF@CaCO3 nanocomposite. After modification with folic acid (FA), O2-FeCOF@CaCO3@FA (OFCCF) can target breast cancer cells and realize PDT/Ca2+ overload synergistic treatment. RESULTS: COF can induce the production of 1O2 under 650 nm irradiation for photodynamic therapy (PDT). Low pH and hypoxia in tumour microenvironment (TME) can activate the nanocomposite to release oxygen and Ca2+. The released O2 can alleviate hypoxia in TME, thus enhancing the efficiency of COF-mediated PDT. Abundant Ca2+ were released and accumulated in cancer cells, resulting in Ca2+ overload. Notably, the reactive oxygen species (ROS) and Ca2+ overload ensure the sustained opening of MPTP, which leads to the change of mitochondria transmembrane potential, the release of cytochrome c (Cyt c) and the activation of caspases 3 for cancer cell apoptosis. CONCLUSION: This multifunctional nanosystem with TME responded abilities provided a novel strategy for innovative clinical cancer therapy.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Neoplasias , Humanos , Calcio/metabolismo , Hipoxia/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
12.
World J Microbiol Biotechnol ; 39(1): 3, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36344903

RESUMEN

Due to increasing antibiotic resistance, targeting bacterial virulence factors is now gaining further interest as an alternative strategy to develop novel classes of anti-infective agents. The critical role of α-hemolysin (Hla), an indispensable virulence determinant, in the pathogenicity of Staphylococcus aureus renders this virulence factor an appealing target for effective therapeutic applications. Herein, we identified a natural compound schisandraone, as an effective Hla inhibitor, which could inhibit Hla production and thus hemolytic activity in a dose-dependent manner without affecting the growth of S. aureus. We also found that the addition of schisandrone could down-regulate the transcriptional levels of the hla, agrA and RNAIII and significantly alleviated Hla-mediated injury of A549 cells co-cultured with S. aureus. In vivo studies further suggested that schisandrone combined with antibiotic ceftiofur exhibited a significant therapeutic effect on S. aureus infection. These findings revealed the role of schisandrone in inhibiting the activity of Hla and we believe that it is a promising anti-virulence candidate to combat MRSA pneumonia.


Asunto(s)
Toxinas Bacterianas , Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Infecciones Estafilocócicas , Humanos , Proteínas Hemolisinas/metabolismo , Staphylococcus aureus , Toxinas Bacterianas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Factores de Virulencia/metabolismo
13.
World J Microbiol Biotechnol ; 39(1): 18, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409383

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic antibiotic-resistant pathogen that negatively impacts society from medical, veterinary, and societal standpoints. The search for alternative therapeutic strategies and innovative anti-infective agents is urgently needed. Among the pathogenic mechanisms of Staphylococcus aureus (S. aureus), sortase A is a virulence factor of great concern because it is highly linked with the ability of MRSA to invade the host. In this study, we identified that rhodionin, a natural compound of flavonoid glucosides, effectively inhibited the activity of SrtA without affecting the survival and growth of bacteria, and its half maximal inhibitory concentration (IC50) value was 22.85 µg/mL. In vitro, rhodionin prominently attenuated the virulence-related phenotype of SrtA by reducing the adhesion of S. aureus to fibrinogen, reducing the capacity of protein A (SpA) on the bacterial surface and biofilm formation. Subsequently, fluorescence quenching and molecular docking were performed to verify that rhodionin directly bonded to SrtA molecule with KA value of 6.22 × 105 L/mol. More importantly, rhodionin showed a significant protective effect on mice pneumonia model and improved the survival rate of mice. According to the above findings, rhodionin achieved efficacy in the treatment of MRSA-induced infections, which holds promising potential to be developed into a candidate used for MRSA-related infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Neumonía Estafilocócica , Ratones , Animales , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Flavonoides/farmacología
14.
World J Microbiol Biotechnol ; 38(11): 200, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35995893

RESUMEN

Staphylococcus aureus (S. aureus), a Gram-positive bacteria, is an incurable cause of hospital and community-acquired infections. Inhibition bacterial virulence is a viable strategy against S. aureus infections based on the multiple virulence factors secreted by S. aureus. Alpha-hemolysin (Hla) plays a crucial role in bacteria virulence without affecting bacterial viability. Here, we identified that 7,8-Dihydroxyflavone (7,8-DHF), a natural compound, was able to decrease the expression of and did not affect the in vitro growth of S. aureus USA300 at a concentration of 32 µg/mL. It was verified by western blot and RT-qPCR that the natural compound could inhibit the transcription and translation of Hla. Further mechanism studies revealed that 7,8-DHF has a negative effect on transcriptional regulator agrA and RNAIII, preventing the upregulation of virulence gene. Cytotoxicity assays showed that 7,8-DHF did not produce significant cytotoxicity to A549 cells. Animal experiments showed that the combination of 7,8-DHF and vancomycin had a more significant therapeutic effect on S. aureus infection, reflecting the synergistic effect of 7,8-DHF with antibiotics. In conclusion, 7,8-DHF was able to target Hla to protect host cells from hemolysis while limiting the development of bacterial resistance.


Asunto(s)
Toxinas Bacterianas , Flavonas , Infecciones Estafilocócicas , Staphylococcus aureus , Células A549 , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Toxinas Bacterianas/metabolismo , Flavonas/farmacología , Proteínas Hemolisinas/genética , Humanos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
15.
Brief Bioinform ; 20(1): 102-109, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28968662

RESUMEN

Adenosine-to-inosine (A-to-I) editing by adenosine deaminase acting on the RNA (ADAR) proteins is one of the most frequent modifications during post- and co-transcription. To facilitate the assignment of biological functions to specific editing sites, we designed an automatic online platform to annotate A-to-I RNA editing sites in pre-mRNA splicing signals, microRNAs (miRNAs) and miRNA target untranslated regions (3' UTRs) from human (Homo sapiens) high-throughput sequencing data and predict their effects based on large-scale bioinformatic analysis. After analysing plenty of previously reported RNA editing events and human normal tissues RNA high-seq data, >60 000 potentially effective RNA editing events on functional genes were found. The RNA Editing Plus platform is available for free at https://www.rnaeditplus.org/, and we believe our platform governing multiple optimized methods will improve further studies of A-to-I-induced editing post-transcriptional regulation.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Programas Informáticos , Regiones no Traducidas 3' , Adenosina/genética , Adenosina/metabolismo , Empalme Alternativo/genética , Secuencia de Bases , Biología Computacional , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Femenino , Ontología de Genes , Humanos , Inosina/genética , Inosina/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Mutación Missense , Edición de ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Análisis de Secuencia de ARN/estadística & datos numéricos , Máquina de Vectores de Soporte , Distribución Tisular
16.
Nano Lett ; 20(3): 1952-1958, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32023411

RESUMEN

The facet-dependent electrical conductivity properties of silicon wafers result from significant band structure differences and variations in bond length, bond geometry, and frontier orbital electron distribution between the metal-like and semiconducting planes of silicon. To further understand the emergence of conductivity facet effects, electrochemical impedance measurements were conducted on intrinsic Si {100}, {110}, and {111} wafers. The attempt-to-escape frequency, obtained from temperature-dependent capacitance versus applied frequency curves, and other parameters derived from typical semiconductor property measurements were used to construct a diagram of the trap energy level (Et) and the amount of trap states Nt(Et). The trap states are located 0.61-0.72 eV above the silicon conduction band. Compared to {100} and {110} wafers, Si {111} wafer shows far less densities of trap states over the range of -0.2 to 2 V. Since these trap states inhibit direct electron excitation to the conduction band, the {111} wafer having much fewer trap states presents the best electrical conductivity property. Impedance data also provide facet-specific carrier lifetimes. The {111} surface gives consistently the lowest carrier lifetime, which reflects its high electrical conductivity. Lastly, ultraviolet photoelectron spectra and diffuse reflectance spectra were taken to obtain Schottky barriers between Ag and contacting Si wafers. The most conductive {111} surface presenting the largest Schottky barrier means the degrees of surface band bending used to explain facet-dependent electrical behaviors cannot be reliably attained this way.

17.
World J Microbiol Biotechnol ; 38(1): 6, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34837116

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen that poses a significant risk to global health today. In S. aureus, α-hemolysin is an important virulence factor as it contributes to the capacity of the bacteria to infect the host. Here, we showed that biochanin A (bioA), an isoflavone present in red clover, cabbage and alfalfa, effectively inhibited hemolytic activity at a dose as low as 32 µg/mL. Further, western blot and RT-qPCR data showed that bioA reduced the production and expression of MRSA hemolysin in a dose-dependent manner. In addition, when different concentrations of bioA were added to a coculture system of A549 cells and S. aureus, it could significantly decrease cell injury. Importantly, the in vivo study showed that bioA could protect mice from pneumonia caused by a lethal dose of MRSA, as evidenced by improving their survival and reducing the number of bacterial colonies in lung tissues, the secretion of hemolysin into alveolar lavage fluid and the degree of pulmonary edema. In conclusion, biochanin A protected the host from MRSA infection by inhibiting the expression of the hemolysin of MRSA, which may provide experimental evidence for its development to a potential anti-MRSA drug.


Asunto(s)
Antibacterianos/administración & dosificación , Genisteína/administración & dosificación , Proteínas Hemolisinas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Neumonía/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Células A549 , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genisteína/farmacología , Proteínas Hemolisinas/genética , Hemólisis/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Neumonía/microbiología , Infecciones Estafilocócicas/microbiología
18.
J Cell Physiol ; 234(8): 12978-12988, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30537082

RESUMEN

Pancreatic stem/progenitor cells convert from a proliferative to a differentiated fate passing through proliferation cease to a resting state. However, the molecular mechanisms of cell cycle arrest are poorly understood. In this study, we demonstrated that the microRNA-124a (miR-124a) inhibited the proliferation of pancreatic progenitor cells both in vitro and ex vivo and promoted a quiescent state. The miR-124a directly targeted SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1), IQ motif-containing GTPase-activating protein 1 (IQGAP1), signal transducer and activator of transcription 3 (STAT3), and cyclin D2 (CCND2), thereby inactivating epidermal growth factor receptor (EGFR) downstream signaling pathways including mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK), phosphatidylinositol 3-kinase-protein kinase B (PI3K/AKT) and Janus kinase (JAK)/STAT3. miR-124a blocked cell proliferation mainly through targeting STAT3 to inhibit PI3K/AKT and JAK/STAT3 signaling. Moreover, miR-124a expression was negatively regulated by EGFR downstream PI3K/AKT signaling. These results indicated that miR-124a and EGFR signaling mutually interact to form a regulating circuit that determines the proliferation of pancreatic progenitor cells.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Células Madre/citología , Animales , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Células Madre/metabolismo
19.
J Am Chem Soc ; 140(44): 14952-14957, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30353725

RESUMEN

Photocarrier generation in a material, transportation to the material surface, and collection at the electrode interface are of paramount importance in any optoelectronic and photovoltaic device. In the last collection process, ideal performance comprises ultrafast charge collection to enhance current conversion efficiency and broadband collection to enhance energy conversion efficiency. Here, for the first time, we demonstrate ultrafast broadband charge collection achieved simultaneously at the clean graphene/organic-inorganic halide perovskite interface. The clean interface is realized by directly growing perovskite on graphene surface without polymer contamination. The tunable two-color pump-probe spectroscopy, time-resolved photoluminescence spectroscopy, and time-dependent density functional theory all reveal that the clean-interfacial graphene collects band-edge photocarriers of perovskite in an ultrashort time of ∼100 fs, with a current collection efficiency close to 99%. In addition, graphene can extract deep-band hot carriers of perovskite within only ∼50 fs, several orders faster than hot carrier relaxation and cooling in perovskite itself, due to the unique Dirac linear band structure of graphene, indicating a potential high energy conversion efficiency exceeding the Shockley-Queisser limit. Adding other graphene superiority of good transparency, high carrier mobility, and extreme flexibility, clean-interfacial graphene provides an ideal charge collection layer and electrode candidate for future optoelectronic and photovoltaic applications in two dimensions.

20.
Molecules ; 22(8)2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28825681

RESUMEN

The genus Alnus (Betulaceae) is comprised of more than 40 species. Many species of this genus have a long history of use in folk medicines. Phytochemical investigations have revealed the presence of diarylheptanoids, polyphenols, flavonoids, terpenoids, steroids and other compounds. Diarylheptanoids, natural products with a 1,7-diphenylheptane structural skeleton, are the dominant constituents in the genus, whose anticancer effect has been brought into focus. Pure compounds and crude extracts from the genus exhibit a wide spectrum of pharmacological activities both in vitro and in vivo. This paper compiles 273 naturally occurring compounds from the genus Alnus along with their structures and pharmacological activities, as reported in 138 references.


Asunto(s)
Alnus/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA