Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(2): e23642, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348710

RESUMEN

Breast cancer is the leading cause of cancer deaths in women worldwide. EF-24, an analog of curcumin, has been shown to possess promising anticancer effects. However, the underlying mechanism remains elusive. In the present study, the inhibitory effect of EF-24 against one breast cancer cell line, MDA-MB-231, and its anti-migration ability were assessed by MTT, wound healing, and Transwell assay. Furthermore, we found that EF-24 could induce initiation of autophagy as evidenced by fluorescence and electron microscope observation. EF-24 also induced mitochondrial apoptosis in MDA-MB-231 cells as detected by Hoechst 33342 staining, flow cytometry analysis, and western blot analysis. In addition, the early autophagy inhibitor 3-MA could reduce the cleavage of PARP protein and protect cells from EF-24-induced apoptosis, while the autophagy inducer (rapamycin) could enhance the anticancer effect of EF-24 in MDA-MB-231 cells, which suggest that EF-24 induces crosstalk between autophagy and apoptosis, which herein participate in the antiproliferative effect of EF-24 in breast cancer cells. Moreover, removal of EF-24-activated ROS with NAC significantly reversed migration ability of MDA-MB-231 cells, indicating that EF-24 exerted an inhibitory effect through a ROS-mediating pathway. These results will help to elucidate the antitumor mechanism of curcumin analogs and to explore future potential clinical applications.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Curcumina , Femenino , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Células MDA-MB-231 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Neoplasias de la Mama/patología , Autofagia , Apoptosis , Línea Celular Tumoral
2.
J Clin Lab Anal ; 34(9): e23362, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32463132

RESUMEN

PURPOSE: To explore the effects of PAK4/LIMK1/Cofilin-1 signaling pathway on the proliferation, invasion, and migration of human osteosarcoma cells. METHODS: The expression of PAK4/LIMK1/Cofilin-1 was detected by immunohistochemistry in osteosarcoma tissues. The osteosarcoma cell line MG63 was transfected and divided into Mock, Control siRNA, si-PAK4, LIMK1, and si-PAK4+LIMK1 groups. Then, the cellular biological features of MG63 cells were detected by CCK-8, wound-healing, Transwell, and flow cytometry methods. The relationship of PAK4 and LIMK1 was performed by co-immunoprecipitation test, and the protein expression of PAK4/LIMK1/Cofilin-1 was determined by Western blotting. Finally, the effect of PAK4 on the growth of osteosarcoma was verified by subcutaneous transplantation model of osteosarcoma in nude mice. RESULTS: The expression of PAK4/LIMK1/Cofilin-1 in both osteosarcoma tissues and cells was up-regulated. Positive PAK4, LIMK1, and Cofilin-1 expressions in osteosarcoma were associated with the clinical stage, distant metastasis, and tumor grade. The MG63 cell viability, migration, and invasion, as well as the expression of PAK4, p-LIMK/LIMK, and p-Cofilin-1/Cofilin-1, were restrained by the knock down of PAK4 while it promoted apoptosis. PAK4 silencing also suppressed the growth of subcutaneous transplanted tumor in nude mice. Co-immunocoprecipitation showed that LIMK and PAK4 protein can form complex in osteosarcoma cells. Besides, LIMK1 overexpression reversed the inhibition effect of PAK4 siRNA on the growth of osteosarcoma cells. CONCLUSION: The expression of PAK4/LIMK1/Cofilin-1 pathway in osteosarcoma tissues was up-regulated. Thus, PAK4 inhibition may restrict the osteosarcoma cell proliferation, invasion, and migration but promote its apoptosis via decreasing the activity of LIMK1/Cofilin-1 pathway.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/patología , Cofilina 1/metabolismo , Regulación Neoplásica de la Expresión Génica , Quinasas Lim/metabolismo , Osteosarcoma/patología , Quinasas p21 Activadas/metabolismo , Adulto , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Movimiento Celular , Proliferación Celular , Cofilina 1/genética , Femenino , Humanos , Quinasas Lim/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Osteosarcoma/genética , Osteosarcoma/metabolismo , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven , Quinasas p21 Activadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA