Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Appl Environ Microbiol ; 89(6): e0053523, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37212714

RESUMEN

Glucaric acid is a valuable chemical with applications in the detergent, polymer, pharmaceutical and food industries. In this study, two key enzymes for glucaric acid biosynthesis, MIOX4 (myo-inositol oxygenase) and Udh (uronate dehydrogenase), were fused and expressed with different peptide linkers. It was found that a strain harboring the fusion protein MIOX4-Udh linked by the peptide (EA3K)3 produced the highest glucaric acid titer and thereby resulted in glucaric acid production that was 5.7-fold higher than that of the free enzymes. Next, the fusion protein MIOX4-Udh linked by (EA3K)3 was integrated into delta sequence sites of the Saccharomyces cerevisiae opi1 mutant, and a strain, GA16, that produced a glucaric acid titer of 4.9 g/L in a shake flask fermentation was identified by a high-throughput screening method using an Escherichia coli glucaric acid biosensor. Strain improvement by further engineering was performed to regulate the metabolic flux of myo-inositol to increase the supply of glucaric acid precursors. The downregulation of ZWF1 and the overexpression of INM1 and ITR1 increased glucaric acid production significantly, and glucaric acid production was increased to 8.49 g/L in the final strain GA-ZII in a shake flask fermentation. Finally, in a 5-L bioreactor, GA-ZII produced a glucaric acid titer of 15.6 g/L through fed-batch fermentation. IMPORTANCE Glucaric acid is a value-added dicarboxylic acid that was synthesized mainly through the oxidation of glucose chemically. Due to the problems of the low selectivity, by-products, and highly polluting waste of this process, producing glucaric acid biologically has attracted great attention. The activity of key enzymes and the intracellular myo-inositol level were both rate-limiting factors for glucaric acid biosynthesis. To increase glucaric acid production, this work improved the activity of the key enzymes in the glucaric acid biosynthetic pathway through the expression of a fusion of Arabidopsis thaliana MIOX4 and Pseudomonas syringae Udh as well as a delta sequence-based integration. Furthermore, intracellular myo-inositol flux was optimized by a series of metabolic strategies to increase the myo-inositol supply, which improved glucaric acid production to a higher level. This study provided a way for constructing a glucaric acid-producing strain with good synthetic performance, making glucaric acid production biologically in yeast cells much more competitive.


Asunto(s)
Ácido Glucárico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Glucárico/metabolismo , Escherichia coli/genética , Vías Biosintéticas , Fermentación , Inositol/metabolismo , Ingeniería Metabólica/métodos
2.
Chembiochem ; 23(11): e202200098, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35352865

RESUMEN

Pimelic acid is an important seven-carbon dicarboxylic acid, which is broadly applied in various fields. The industrial production of pimelic acid is mainly through a chemical method, which is complicated and environmentally unfriendly. Herein, we found that pimelic acid could be biosynthesized by the reverse adipate-degradation pathway (RADP), a typical Claisen condensation reaction that could be applied to the arrangement of C-C bond. In order to strengthen the supply of glutaryl-CoA precursor, PA5530 protein was used to transport glutaric acid. Subsequently, we discovered that the enzymes in the BIOZ pathway are isoenzyme of the RADP pathway enzymes. By combining the isoenzymes of the two pathways, the titer of pimelic acid reached 36.7 mg ⋅ L-1 under the optimal combination, which was increased by 382.9 % compared with the control strain B-3. It was also the highest titer of pimelic acid biosynthesized by Claisen condensation reaction, laying the foundation for the production of pimelic acid and its derivatives.


Asunto(s)
Adipatos , Isoenzimas , Adipatos/metabolismo , Ácidos Pimélicos/metabolismo
3.
Metab Eng ; 73: 1-10, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35643281

RESUMEN

Malonate is a platform chemical that has been utilized to synthesize many valuable chemical compounds. Here, Saccharomyces cerevisiae was metabolically engineered to produce malonate through the malonyl-CoA pathway. To construct the key step of converting malonyl-CoA to malonate, a native mitochondrial 3-hydroxyisobutyryl-CoA hydrolase gene EHD3 was mutated to target the cytoplasm and obtain malonyl-CoA hydrolase activity. The malonyl-CoA hydrolase activity of Ehd3 was achieved by mutating the malonyl-CoA binding site F121 to I121 and the active site E124 to seven amino acids (S/T/H/K/R/N/Q). We identified that the strain with E124S mutation had the highest malonate titer with 13.6 mg/L. Genomic integration of the mutant EHD3 and ACC1** to delta sequence sites was further explored to increase their reliable expression. Accordingly, a screening method with the work flow of fluorescence detection, shake-tube fermentation, and shake-flask fermentation was constructed to screen high copy delta sequences efficiently. The malonate titer was improved to 73.55 mg/L after screening the ∼1500 integrative strains, which was increased 4.4-folds than that of the episomal strain. We further engineered the strain by regulating the expression of key enzyme in the malonyl-CoA pathway to improve the precursor supply and inhibiting its competing pathways, and the final engineered strain LMA-16 produced 187.25 mg/L in the flask, 14-fold compared with the initial episomal expression strain. Finally, the combined efforts increased the malonate titer to 1.62 g/L in fed-batch fermentation.


Asunto(s)
Hidrolasas , Malonatos , Malonil Coenzima A , Ingeniería Metabólica , Saccharomyces cerevisiae , Fermentación , Hidrolasas/genética , Hidrolasas/metabolismo , Malonatos/metabolismo , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Ingeniería Metabólica/métodos , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201004

RESUMEN

Cadmium is a carcinogen that can induce ER stress, DNA damage, oxidative stress and cell death. The yeast mitogen-activated protein kinase (MAPK) signalling pathways paly crucial roles in response to various stresses. Here, we demonstrate that the unfolded protein response (UPR) pathway, the high osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway are all essential for yeast cells to defend against the cadmium-induced toxicity, including the elevated ROS and cell death levels induced by cadmium. We show that the UPR pathway is required for the cadmium-induced phosphorylation of HOG_MAPK Hog1 but not for CWI_MAPK Slt2, while Slt2 but not Hog1 is required for the activation of the UPR pathway through the transcription factors of Swi6 and Rlm1. Moreover, deletion of HAC1 and IRE1 could promote the nuclear accumulation of Hog1, and increase the cytosolic and bud neck localisation of Slt2, indicating crucial roles of Hog1 and Slt2 in regulating the cellular process in the absence of UPR pathway. Altogether, our findings highlight the significance of these two MAPK pathways of HOG and CWI and their interrelationship with the UPR pathway in responding to cadmium-induced toxicity in budding yeast.


Asunto(s)
Cadmio/toxicidad , Pared Celular/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glicerol/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Pared Celular/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Concentración Osmolar , Fosforilación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal
5.
BMC Microbiol ; 20(1): 34, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066383

RESUMEN

BACKGROUND: Sodium dodecyl sulfate (SDS) is one of the most widely used anionic alkyl sulfate surfactants. Toxicological information on SDS is accumulating, however, mechanisms of SDS toxicity regulation remain poorly understood. In this study, the relationship between the SDS-sensitive mutants and their intracellular ROS levels has been investigated. RESULTS: Through a genome-scale screen, we have identified 108 yeast single-gene deletion mutants that are sensitive to 0.03% SDS. These genes were predominantly related to the cellular processes of metabolism, cell cycle and DNA processing, cellular transport, transport facilities and transport routes, transcription and the protein with binding function or cofactor requirement (structural or catalytic). Measurement of the intracellular ROS (reactive oxygen species) levels of these SDS-sensitive mutants showed that about 79% of SDS-sensitive mutants accumulated significantly higher intracellular ROS levels than the wild-type cells under SDS stress. Moreover, SDS could generate oxidative damage and up-regulate several antioxidant defenses genes, and some of the SDS-sensitive genes were involved in this process. CONCLUSION: This study provides insight on yeast genes involved in SDS tolerance and the elevated intracellular ROS caused by SDS stress, which is a potential way to understand the detoxification mechanisms of SDS by yeast cells.


Asunto(s)
Eliminación de Gen , Redes Reguladoras de Genes/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Dodecil Sulfato de Sodio/toxicidad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Secuenciación del Exoma
6.
Appl Microbiol Biotechnol ; 104(10): 4259-4272, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32215709

RESUMEN

Dicarboxylic acids are widely used in fine chemical and food industries as well as the monomer for polymerisation of high molecular material. Given the problems of environmental contamination and sustainable development faced by traditional production of dicarboxylic acids based on petrol, new approaches such as bio-based production of dicarboxylic acids drew more attentions. The yeast, Saccharomyces cerevisiae, was regarded as an ideal organism for bio-based production of dicarboxylic acids with high tolerance to acidic and hyperosmotic environments, robust growth using a broad range of substrates, great convenience for genetic manipulation, stable inheritance via sub-cultivation, and food compatibility. In this review, the production of major dicarboxylates via S. cerevisiae was concluded and the challenges and opportunities facing were discussed.Key Points• Summary of current production of major dicarboxylic acids by Saccharomyces cerevisiae.• Discussion of influence factors on four-carbon dicarboxylic acids production by Saccharomyces cerevisiae.• Outlook of potential production of five- and six-carbon dicarboxylic acids by Saccharomyces cerevisiae.


Asunto(s)
Ácidos Dicarboxílicos/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/fisiología , Ácidos Dicarboxílicos/clasificación , Saccharomyces cerevisiae/genética
7.
Biotechnol Lett ; 42(11): 2169-2178, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32691185

RESUMEN

OBJECTIVE: To enhance the glucaric acid (GA) production in Saccharomyces cerevisiae, the Vitreoscilla hemoglobin was employed to reinforce cellular oxygen supplement. Additionally, the pH-free fermentation strategy was engaged to lower the cost brought by base feeding during the acid-accumulated and long-period glucaric acid production. RESULTS: Recombinant yeast Bga-4 was constructed harboring Vitreoscilla hemoglobin on the basis of previous Bga-3. Higher glucose uptake rate, growth rate, and ethanol reuse rate were achieved in Bga-4 in shake-flask fermentation than those in Bga-3. Furthermore, the fed-batch fermentation in a 5-L bioreactor was performed without pH control, resulting in a final glucaric acid titer of 6.38 g/L. CONCLUSIONS: Both the GA titer and biomass were enhanced along with the efficiency of ethanol re-utilization in the presence of VHb. Moreover, the absence of base feeding for long-period fermentation reduced production cost, which is meaningful for industrial applications.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ácido Glucárico/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos/microbiología , Clonación Molecular , Fermentación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
8.
Metab Eng ; 46: 28-34, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29477857

RESUMEN

The glyoxylate shunt is a branch of the tricarboxylic acid (TCA) cycle which directly determines the synthesis of glycolate, and the balance between the glyoxylate shunt and TCA cycle is very important for the growth of Escherichia coli. In order to accumulate glycolate at high yield and titer, strategies for over-expressing glycolate pathway enzymes including isocitrate lyase (AceA), isocitrate dehydrogenase kinase/phosphatase (AceK) and glyoxylate reductase (YcdW) were analyzed. The genes encoding these three enzymes were transcribed under the control of promoter pTrc on pTrc99A, to form pJNU-3, which was harbored by strain Mgly1, resulting in strain Mgly13. Strain Mgly13 produced glycolate with 0.385 g/g-glucose yield (45.2% of the theoretical yield). Citrate synthase (GltA) converted excess acetyl-CoA and oxaloacetate to citrate and was over-expressed by pJNU-4 (pCDFDuet-1 backbone). Thus, the resulting strain Mgly134 produced glycolate with a 0.504 g/g-glucose yield (59.3% of the theoretical yield). We then eliminated the pathways involved in the degradation of glycolate, resulting in strain Mgly434, which produced glycolate with 92.9% of the theoretical yield. Following optimization of fermentation, the maximum glycolate titer from strain Mgly434 was 65.5 g/L.


Asunto(s)
Ciclo del Ácido Cítrico , Proteínas de Escherichia coli , Escherichia coli , Glicolatos/metabolismo , Glioxilatos/metabolismo , Microorganismos Modificados Genéticamente , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo
9.
Microb Cell Fact ; 17(1): 67, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29729665

RESUMEN

BACKGROUND: Glucaric acid is a high-value-added chemical that can be used in various fields. Because chemical oxidation of glucose to produce glucaric acid is not environmentally friendly, microbial production has attracted increasing interest recently. Biological pathways to synthesize glucaric acid from glucose in both Escherichia coli and Saccharomyces cerevisiae by co-expression of genes encoding myo-inositol-1-phosphate synthase (Ino1), myo-inositol oxygenase (MIOX), and uronate dehydrogenase (Udh) have been constructed. However, low activity and instability of MIOX from Mus musculus was proved to be the bottleneck in this pathway. RESULTS: A more stable miox4 from Arabidopsis thaliana was chosen in the present study. In addition, high copy delta-sequence integration of miox4 into the S. cerevisiae genome was performed to increase its expression level further. Enzymatic assay and quantitative real-time PCR analysis revealed that delta-sequence-based integrative expression increased MIOX4 activity and stability, thus increasing glucaric acid titer about eight times over that of episomal expression. By fed-batch fermentation supplemented with 60 mM (10.8 g/L) inositol, the multi-copy integrative expression S. cerevisiae strain produced 6 g/L (28.6 mM) glucaric acid from myo-inositol, the highest titer that had been ever reported in S. cerevisiae. CONCLUSIONS: In this study, glucaric acid titer was increased to 6 g/L in S. cerevisiae by integrating the miox4 gene from A. thaliana and the udh gene from Pseudomonas syringae into the delta sequence of genomes. Delta-sequence-based integrative expression increased both the number of target gene copies and their stabilities. This approach could be used for a wide range of metabolic pathway engineering applications with S. cerevisiae.


Asunto(s)
Ácido Glucárico/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo
10.
Can J Microbiol ; 62(6): 475-84, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27100389

RESUMEN

The Vcx1-M1 mutant is known to confer calcineurin-dependent Mn(2+) tolerance in budding yeast. Here, we demonstrate that another Vcx1 mutant, Vcx1-D1 with calcineurin-independent vacuolar Ca(2+)/H(+) exchanger activity, confers calcineurin-independent Mn(2+) tolerance. Unlike Vcx1-M1, the Mn(2+) tolerance conferred by Vcx1-D1 is dependent on the presence of Pmr1 or Pmc1. The Pmr1-dependent Mn(2+) tolerance of Vcx1-D1 requires the presence of calcineurin but not the functioning of the Ca(2+)/calcineurin signaling pathway. Similar to the wild-type Vcx1, C-terminally green fluorescent protein tagged Vcx1-D1 and Vcx1-M1 mutants localize to the endoplasmic reticulum instead of its normal vacuolar destination, but they remain functional in Ca(2+) sensitivity and Mn(2+) tolerance.


Asunto(s)
Antiportadores/metabolismo , Calcineurina/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal , Animales , Antiportadores/genética , ATPasas Transportadoras de Calcio/genética , Retículo Endoplásmico/metabolismo , Manganeso/toxicidad , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo
11.
FEMS Yeast Res ; 14(4): 614-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24606409

RESUMEN

The activated retrograde (RTG) pathway controls transcription of target genes through a heterodimer of transcription factors, Rtg1 and Rtg3, in Saccharomyces cerevisiae. Here, we have identified the sole homologous gene CaRTG3 that encodes a protein of 520 amino acids with characteristics of the basic helix-loop-helix/leucine zipper (bHLH/Zip) family in Candida albicans. Deletion of CaRTG3 results in C. albicans cells being sensitive to high concentrations of calcium and lithium cations as well as sodium dodecyl sulfate and activates the calcium/calcineurin signaling pathway in C. albicans cells. CaRTG3 is also involved in the tolerance of C. albicans cells to the antifungal drugs azoles and terbinafine, but not to the antifungal drugs casponfungin and amphotericin B as well as the cell-wall-damaging reagents Calcoflour White and Congo red. In contrast to ScRtg3, CaRtg3 is not involved in the osmolar response and is constitutively localized in the nucleus. However, deletion of CaRTG3 results in a delay in serum-induced filamentation of C. albicans cells. Therefore, CaRtg3 plays a role in tolerance to cations and antifungal drugs as well as serum-induced filamentation in C. albicans.


Asunto(s)
Antifúngicos/toxicidad , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Cationes/toxicidad , Regulación Fúngica de la Expresión Génica , Suero/metabolismo , Factores de Transcripción/metabolismo , Antifúngicos/metabolismo , Azoles/metabolismo , Azoles/toxicidad , Calcio/metabolismo , Calcio/toxicidad , Candida albicans/genética , Cationes/metabolismo , Tolerancia a Medicamentos , Eliminación de Gen , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Litio/metabolismo , Litio/toxicidad , Naftalenos/metabolismo , Naftalenos/toxicidad , Saccharomyces cerevisiae , Dodecil Sulfato de Sodio/metabolismo , Dodecil Sulfato de Sodio/toxicidad , Terbinafina
12.
Genomics ; 101(1): 49-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23026396

RESUMEN

Here we have identified 120 gene deletion mutants that are sensitive to 0.4M calcium in Saccharomyces cerevisiae. Twenty-seven of these mutants are of genes involved in the vacuolar protein sorting pathway, including those encoding the seven components of the ESCRT complexes, and ten of them encode the components and assembly factors of the vacuolar H(+)-ATPase. Both Mediator and Paf1 complexes modulating the activity of the general transcription machinery are involved in the calcium sensitivity of yeast cells. Most of these mutants show elevated intracellular calcium contents in response to calcium stress. The calcium sensitivity of 106 mutants can be completely suppressed by 10mM Mg(2+), 56 of which can also be suppressed by the inhibitor of calcineurin, cyclosporine A. Therefore, the calcium sensitivity of nearly a half of these 120 mutations is at least partially due to the activation of calcineurin and can be modulated by magnesium ion.


Asunto(s)
Calcineurina/metabolismo , Calcio/farmacología , Eliminación de Gen , Genoma Fúngico , Saccharomyces cerevisiae/genética , Ciclosporina/farmacología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inhibidores Enzimáticos/farmacología , Espacio Intracelular/metabolismo , Magnesio/farmacología , Complejo Mediador/genética , Complejo Mediador/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Bioresour Technol ; 403: 130867, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777235

RESUMEN

2-Phenylethanol (2-PE) is a highly valuable aromatic alcohol utilized in fragrance, cosmetics and food industries. Due to the toxic by-products from chemical synthesis and the low productivity of the extraction method, bioproduction of 2-PE by yeast is considered promising. In this study, a wild-type Saccharomyces bayanus L1 strain producing 2-PE was isolated from soy sauce mash. Transcriptional analysis showed that 2-PE was synthesized via the Ehrlich pathway and Shikimate pathway in S. bayanus L1. By improving the fermentation conditions in shaking flasks, the maximum 2-PE titer reached 4.2 g/L with a productivity of 0.058 g/L/h within 72 h. In fed-batch fermentation, S. bayanus L1 strain produced 6.5 g/L of 2-PE within 60 h, achieving a productivity of 0.108 g/L/h. These findings suggest that S. bayanus L1 strain is an efficient 2-PE producer, paving the way for highly efficient 2-PE production.


Asunto(s)
Fermentación , Alcohol Feniletílico , Saccharomyces , Alcohol Feniletílico/metabolismo , Saccharomyces/metabolismo , Saccharomyces/genética , Alimentos de Soja
14.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3171-3188, 2024 Sep 25.
Artículo en Zh | MEDLINE | ID: mdl-39319732

RESUMEN

Hexokinase is a crucial diagnostic reagent in blood glucose testing, which has high requirements for the enzyme activity and thermal stability. The hexokinases in China mainly rely on imports and are primarily sourced from yeast, with high costs and poor thermal stability, which limit the development of blood glucose diagnostic reagents. Therefore, there is an urgent need for the efficient expression of highly active and thermally stable hexokinases. In this study, an ATP-dependent hexokinase (glucokinase, Glk) from a thermophilic bacterium Glk was heterologously expressed in Escherichia coli BL21(DE3). Glk exhibited high specificity for glucose, dependence on Mg2+, and the highest activity at pH 8.5 and 80 ℃. It retained over 90% activity after storage at 30-37 ℃ for 7 days, demonstrating thermal stability as an alkaline glucose kinase. Subsequently, the factors influencing Glk expression, including culture medium, OD600, final concentration of the inducer, induction temperature, and induction duration, were systematically optimized. The optimization increased the Glk expression by 4.71 folds Glk compared with non-optimized conditions. After purification, Glk exhibited a specific activity of (43.05±2.00) U/mg and the purity ≥98%. In conclusion, the developed expression and purification method for the highly thermostable hexokinase provides more possibilities for overcoming the shortcomings in the preparation of blood glucose diagnostic reagents in China.


Asunto(s)
Estabilidad de Enzimas , Escherichia coli , Hexoquinasa , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hexoquinasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Glucosa/metabolismo , Temperatura , Concentración de Iones de Hidrógeno
15.
Sci Rep ; 14(1): 19027, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152229

RESUMEN

Pulsed electromagnetic field (PEMF) therapy has been extensively investigated in clinical studies for the treatment of angiogenesis-related diseases. However, there is a lack of research on the impact of PEMFs on energy metabolism and mitochondrial dynamics during angiogenesis. The present study included tube formation and CCK-8 assays. A Seahorse assay was conducted to analyze energy metabolism, and mitochondrial membrane potential assays, mitochondrial imaging, and reactive oxygen species assays were used to measure changes in mitochondrial structure and function in human umbilical vein endothelial cells (HUVECs) exposed to PEMFs. Real-time polymerase chain reaction was used to analyze the mRNA expression levels of antioxidants, glycolytic pathway-related genes, and genes associated with mitochondrial fission and fusion. The tube formation assay demonstrated a significantly greater tube network in the PEMF group compared to the control group. The glycolysis and mitochondrial stress tests revealed that PEMFs promoted a shift in the energy metabolism pattern of HUVECs from oxidative phosphorylation to aerobic glycolysis. Mitochondrial imaging revealed a wire-like mitochondrial morphology in the control group, and treatment with PEMFs led to shorter and more granular mitochondria. Our major findings indicate that exposure to PEMFs accelerates angiogenesis in HUVECs, likely by inducing energy metabolism reprogramming and mitochondrial fission.


Asunto(s)
Angiogénesis , Campos Electromagnéticos , Reprogramación Metabólica , Dinámicas Mitocondriales , Humanos , Angiogénesis/efectos de la radiación , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Potencial de la Membrana Mitocondrial , Reprogramación Metabólica/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Dinámicas Mitocondriales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
FEMS Yeast Res ; 13(1): 85-96, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23083206

RESUMEN

In Saccharomyces cerevisiae cells, both of the two PP2C protein phosphatases ScPtc2p and ScPtc3p and the PP4 protein phosphatase ScPph3 are responsible for ScRad53p dephosphorylation after the DNA methylation agent methylmethane sulfonate (MMS)-induced DNA damage. In this study, we show that CaPtc2p is not required for the CaRad53p dephosphorylation during the recovery from DNA damage, as is CaPph3p in Candida albicans. However, deletion of CaPPH3 has an additive effect on the sensitivity of C. albicans cells lacking CaPTC2 to MMS and the DNA synthesis inhibitor hydroxyurea (HU). In addition, deletion of CaPPH3 promotes in vitro filamentation of C. albicans cells. Furthermore, mutation of CaPTC2 is epistatic to that of CaPPH3 in the sensitivity of C. albicans cells to rapamycin. Therefore, CaPtc2p and CaPph3p might play a role in the target of rapamycin (TOR) signaling in C. albicans cells.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/genética , Mutágenos/farmacología , Fosfoproteínas Fosfatasas/genética , Proteínas Serina-Treonina Quinasas/genética , Sirolimus/farmacología , Candida albicans/citología , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Clonación Molecular , Daño del ADN , ADN de Hongos/genética , Epistasis Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Fenotipo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
17.
Heliyon ; 9(8): e18763, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554838

RESUMEN

Global attention has shifted in recent years to climate change and global warming. The international community has set the objective of carbon neutrality to address the climate crisis. Carbon neutrality has drawn significant attention as a crucial step in the fight against climate change, with individual nations having established their carbon neutrality targets. This paper aims to use bibliometric analysis to investigate research hotspots and trends in carbon neutrality research, and accesses the literature through the Web of Science (WoS) core database and undertakes an in-depth examination of 909 publications linked to carbon neutrality around the world using Vosviewer and Bibliometrix software. According to the findings, the number of carbon neutrality publications has increased dramatically in recent years. There are also notable differences in carbon neutrality research across countries and regions. China and the US are the primary drivers and leaders of carbon neutrality research, and developing countries have relatively little carbon neutrality research. Research has concentrated on carbon neutrality's practical, technical, policy, and economic aspects, as well as renewable energy sources, carbon conversion technologies, and carbon capture and storage technologies are also research hotspots. The paper also outlines opportunities for the advancement of carbon neutrality research in the future, including how it might be further integrated with Artificial intelligence (AI) and the metaverse, and how to attack the difficulties and uncertainties faced by the post-epidemic rebound. This study aids in understanding the current state of the field of carbon neutrality research and can be used to guide future studies.

18.
Microbiol Spectr ; : e0014623, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732744

RESUMEN

Sulfamethoxazole (SMX), as one of the most widely used sulfonamide antibiotics, has been frequently detected in the aqueous environment, posing potential risks to the environment and human health. Although microbial degradation methods have been widely applied, some issues remain, including low degradation efficiency and poor environmental adaptability. In this regard, constructing efficient degrading bacteria by metabolic engineering is an ideal solution to these challenges. In this study, we used Paracoccus denitrificans DYTN-1, a superior nitrogen removal environment strain, as chassis to construct an SMX degradation pathway, obtaining a new bacteria for simultaneous degradation of SMX and removal of ammonia nitrogen. In doing this, we first identified and characterized four native promoters of P. denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. After degradation pathway expression level optimization and FMN reductase optimization, SMX degradation efficiency was significantly improved. The constructed P. d-pIAB4-PCS-sutR strain exhibited superior co-degradation of SMX and ammonia nitrogen contaminants with degradation rates of 44% and 71%, respectively. This study could pave the way for SMX degradation engineered strain design and evolution of environmental bioremediation. IMPORTANCE The abuse of sulfamethoxazole (SMX) had led to an increased accumulation in the environment, resulting in the disruption of the structure of microbial communities, further disrupting the bio-degradation process of other pollutants, such as ammonia nitrogen. To solve this challenge, we first identified and characterized four native promoters of Paracoccus denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. Then SMX degradation efficiency was significantly improved with degradation pathway expression level optimization and FMN reductase optimization. Finally, the superior nitrogen removal environment strain, P. denitrificans DYTN-1, obtained an SMX degradation function. This pioneering study of metabolic engineering to enhance the SMX degradation in microorganisms could pave the way for designing the engineered strains of SMX and nitrogen co-degradation and the environmental bioremediation.

19.
FEMS Yeast Res ; 12(8): 897-906, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22882651

RESUMEN

Type 2C protein phosphatases (PP2C) are monomeric enzymes that require magnesium or manganese ions for their activities. There are seven PP2C genes in Candida albicans. Here, we demonstrate that CaPTC5 encodes a mitochondrial PP2C enzyme. Expression of CaPTC5 transcripts remains constant during the serum-induced hyphal development. Deletion of CaPTC5 does not affect the in vitro filamentation but renders C. albicans cells sensitive to terbinafine and cadmium, and this sensitivity is complemented by the Saccharomyces cerevisiae ScPTC5. Deletion of CaPTC6 does not have any additive effect on, but deletion of CaPTC7 blocks, the terbinafine sensitivity owing to deletion of CaPTC5. In addition, we have shown that deletion of CaPTC6 also renders C. albicans cells sensitive to cadmium, while deletion of CaPTC7 leads to a high cadmium tolerance, and this tolerance is abolished by further deletion of CaPTC5 or CaPTC6. Furthermore, double deletion of CaPTC6 and CaPTC7 renders C. albicans cells more tolerant to azoles, but deletion of CaPTC5 and CaPTC7 slightly increases the azole sensitivity of C. albicans cells. Our results demonstrate that three mitochondrial PP2C genes CaPTC5, CaPTC6 and CaPTC7 interact differentially in the response of C. albicans cells to antifungal drugs and cadmium.


Asunto(s)
Antifúngicos/farmacología , Cadmio/farmacología , Candida albicans/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Alelos , Azoles/farmacología , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Cromosomas Fúngicos , ADN de Hongos/genética , Proteínas Fúngicas/genética , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Mitocondrias/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 2C , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Sheng Wu Gong Cheng Xue Bao ; 38(2): 705-718, 2022 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-35234392

RESUMEN

As an important dicarboxylic acids existing in nature, glucaric acid has been widely used in medical, health, and polymer materials industry, therefore it is considered as one of the "top value-added chemicals from biomass". In this study, using Saccharomyces cerevisiae as a chassis microorganism, the effects of overexpression of myo-inositol transporter Itr1, fusional expression of inositol oxygenase MIOX4 and uronate dehydrogenase Udh, and down-expression of glucose-6-phosphate dehydrogenase gene ZWF1 on the glucaric acid production were investigated. The results showed that the yield of glucaric acid was increased by 26% compared with the original strain Bga-3 under shake flask fermentation after overexpressing myo-inositol transporter Itr1. The yield of glucaric acid was increased by 40% compared with Bga-3 strain by expressing the MIOX4-Udh fusion protein. On these basis, the production of glucaric acid reached 5.5 g/L, which was 60% higher than that of Bga-3 strain. In a 5 L fermenter, the highest yield of glucaric acid was 10.85 g/L, which was increased 80% compared with that of Bga-3 strain. The application of the above metabolic engineering strategy improved the pathway efficiency and the yield of glucaric acid, which may serve as a reference for engineering S. cerevisiae to produce other chemicals.


Asunto(s)
Ácido Glucárico , Saccharomyces cerevisiae , Fermentación , Ácido Glucárico/metabolismo , Inositol-Oxigenasa/genética , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA