Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 492, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480074

RESUMEN

BACKGROUND: Diet may influence biological aging and the discrepancy (∆age) between a subject's biological age (BA) and chronological age (CA). We aimed to investigate the correlation of dietary flavonoids with the ∆age of organs (heart, kidney, liver) and the whole body. METHOD: A total of 3193 United States adults were extracted from the National Health and Nutrition Examination Survey (NHANES) in 2007-2008 and 2017-2018. Dietary flavonoids intake was assessed using 24-h dietary recall method. Multiple linear regression analysis was performed to evaluate the association of dietary flavonoids intake with the ∆age of organs (heart, kidney, liver) and the whole body. BA was computed based on circulating biomarkers, and the resulting ∆age was tested as an outcome in linear regression analysis. RESULTS: The ∆age of the whole body, heart, and liver was inversely associated with higher flavonoids intake (the whole body ∆age ß = - 0.58, cardiovascular ∆age ß = - 0.96, liver ∆age ß = - 3.19) after adjustment for variables. However, higher flavonoids intake positively related to renal ∆age (ß = 0.40) in participants with chronic kidney disease (CKD). Associations were influenced by population characteristics, such as age, health behavior, or chronic diseases. Anthocyanidins, isoflavones and flavones had the strongest inverse associations between the whole body ∆age and cardiovascular ∆age among all the flavonoids subclasses. CONCLUSION: Flavonoids intake positively contributes to delaying the biological aging process, especially in the heart, and liver organ, which may be beneficial for reducing the long-term risk of cardiovascular or liver disease.


Asunto(s)
Flavonoides , Corazón , Adulto , Humanos , Encuestas Nutricionales , Hígado , Envejecimiento
2.
Ecotoxicol Environ Saf ; 264: 115472, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716072

RESUMEN

Today, the existence of radio-frequency electromagnetic fields (RF-EMF) emitted from cell phones, wireless routers, base stations, and other sources are everywhere around our living environment, and the dose is increasing. RF-EMF have been reported to be cytotoxic and supposed to be a risk factor for various human diseases, thus, more attention is necessary. In recent years, interfere with mitochondrial calcium uptake by using mitochondrial calcium uniporter (MCU) inhibitor were suggested to be potential clinical treatment in mitochondrial calcium overload diseases, like neurodegeneration, ischemia/reperfusion injury, and cancer, but whether this approach increases the health risk of RF-EMF exposure are unknown. To address our concern, we did a preliminary study to determine whether inhibition of MCU will increase the genotoxicity of RF-EMF exposure in cells, and found that short-time (15 min) exposure to 1800 MHz RF-EMF induced significant DNA damage and cell apoptosis in mouse embryonic fibroblasts (MEFs) treated with Ruthenium 360 (Ru360), a specific inhibitor of MCU, but no significant effects on cell cycle, cell proliferation, or cell viability were observed. In conclusion, our results indicated that inhibiting MCU increases the genotoxicity of RF-EMF exposure, and more attention needs to be paid to the possible health impact of RF-EMF exposure under these treatments.


Asunto(s)
Calcio , Rutenio , Animales , Ratones , Humanos , Campos Electromagnéticos/efectos adversos , Fibroblastos , Daño del ADN
3.
Front Nutr ; 10: 1195107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476404

RESUMEN

Background: The healthiest way to prevent metabolic syndrome (MetS) is through behavioral and nutritional adjustments. We examined the relationship between total flavonoids intake, flavonoid subclasses, and clinically manifest MetS. Methods: A cross-sectional analysis was conducted among 28,719 individuals from the National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2007-2011 and 2017-2018. Two 24-h reviews were conducted to determine flavonoids intake and subclasses. The link between flavonoids intake and MetS was investigated using a multivariate logistic regression model. Results: Q2 and Q3 of total flavonoids intake were associated with 20 and 19% lower risk of incident MetS after adjusting age and sex. Anthocyanidins and flavanones intake in Q2 and Q3 substantially reduced the MetS risk compared to Q1. MetS risk decreased steadily as the total intake of flavonoids increased to 237.67 mg/d. Flavanones and anthocyanidins also displayed V-shaped relationship curves (34.37 and 23.13 mg/d). Conclusion: MetS was adversely linked with total flavonoids intake, flavanones, and anthocyanidins. Moreover, the most effective doses of total flavonoids, flavanones, and anthocyanidins were 237.67, 34.37, and 23.13 mg/d, respectively, potentially preventing MetS.

4.
Artif Intell Med ; 142: 102585, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316099

RESUMEN

BACKGROUND: Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. METHODS: This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. RESULTS: Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73-3.76), 2.45 (95 % CI = 0.78-7.64), 3.84 (95 % CI = 2.20-6.68), and 2.66 (95 % CI = 0.96-7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67-0.84), and 0.80 (95%CI = 0.0.68-0.95), respectively. CONCLUSION: The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.


Asunto(s)
Inteligencia Artificial , Neoplasias Pulmonares , Humanos , Estudios Prospectivos , Neoplasias Pulmonares/radioterapia , Bases de Datos Factuales , PubMed
5.
Food Sci Nutr ; 11(11): 6888-6898, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970375

RESUMEN

7,8-dihydroxyflavone (7,8-DHF) is a biologically active flavone with various physiological activities, including neuroprotection, anti-inflammation, and weight loss. Previous studies have found that the efflux protein P-glycoprotein (P-gp) significantly affects the transepithelial transport of 7,8-DHF in the intestine, resulting in its low oral bioavailability. Based on this, in this study, a Caco-2 monolayer cell model was used to investigate 14 dietary plant flavonoids as potential P-gp inhibitors, and their effects on the transepithelial transport and in vitro digestion of 7,8-DHF were explored. The results showed that among the 14 plant flavonoids, hesperetin, epigallocatechin gallate, fisetin, kaempferol, quercetin, and isoorientin increased and the apparent permeability coefficients (P app) of 7,8-DHF at AP → BL direction and lowered P app value at BL → AP direction to varying degrees, reducing the efflux ratio of 7,8-DHF less than 1.5. In particular, kaempferol and quercetin exhibited the best effect on promoting the transepithelial transport of 7,8-DHF, especially when used at molar concentration ratios of 1:1 and 1:2 with 7,8-DHF. This is beneficial for improving the oral bioavailability of 7,8-DHF. Meanwhile, 7,8-DHF was found to maintain structural stability in simulated saliva, gastric juice, and intestinal juice, and its stability was not affected by the coexistence of quercetin and kaempferol. Overall, this study provided a theoretical basis for seeking natural and safe P-gp inhibitors to improve the oral absorption of natural products.

6.
Food Chem ; 399: 133959, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36001928

RESUMEN

Advances in understanding the biological effects of dietary flavonoids and flavonoid-rich foods have been reported. Improving knowledge about their beneficial effects, and mechanisms of action, is crucial for better utilization. However, mechanisms responsible for their health benefits are still unclear. Previous research considered has suggested that gut microbiota might be linked to the metabolism of dietary flavonoids. To understand the bioactivities of dietary flavonoids/flavonoid-rich foods better, and the role of microbiota, we explored systematically 1) types of dietary flavonoids and associated health benefits, 2) low bioaccessibilities and metabolic characteristics, 3) gut microbiota role in regulation, and 4) crosstalk between regulation mechanisms. Current challenges and future perspectives were also considered, offering new research directions and identifying trends in the development of flavonoid-rich food products.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Flavonoides/metabolismo , Promoción de la Salud , Polifenoles/farmacología
7.
Food Sci Nutr ; 11(7): 4233-4245, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37457170

RESUMEN

The hard-shelled mussel (Mytilus coruscus) has been used as a traditional Chinese medicine and health food in China for centuries. Polysaccharides from mussel has been reported to have multiple biological functions, however, it remains unclear whether mussel polysaccharide (MP) exerts protective effects in intestinal functions, and the underlying mechanisms of action remain unclear. The aim of this study was to investigate the protective effects and mechanism of MP on intestinal oxidative injury in mice. In this study, 40 male BALB/C mice were used, with 30 utilized to produce an animal model of intestinal oxidative injury with intraperitoneal injection of cyclophosphamide (Cy) for four consecutive days. The protective effects of two different doses of MP (300 and 600 mg/kg) were assessed by investigating the change in body weight, visceral index, and observing colon histomorphology. Moreover, the underlying molecular mechanisms were investigated by measuring the antioxidant enzymes and related signaling molecules through ELISA, real-time PCR, and western blot methods. The results showed that MP pretreatment effectively protected the intestinal from Cy-induced injury: improved the colon tissue morphology and villus structure, increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, and reduced malondialdehyde (MDA) content in serum and colon tissues. Meanwhile, MP also significantly increased the expression levels of SOD, GSH-Px, heme oxygenase-1 (HO-1), and nuclear factor E2-related factor 2 (Nrf2) mRNA in colon tissues. Further, western blot results showed that the expression of Nrf2 protein was significantly upregulated while kelch-like ECH-associated protein 1 (Keap1) was significantly downregulated by MP in the colonic tissues. This study indicates that MP can ameliorate Cy-induced oxidative stress injury in mice, and Nrf2-Keap1 signaling pathway may mediate these protective effects.

8.
Antioxidants (Basel) ; 11(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35624888

RESUMEN

The use of bamboo leaf flavonoids (BLF) as functional food and cosmetic ingredients is limited by low bioavailability and difficulty in being absorbed by the intestine or skin. The aim of this study was to prepare BLF-loaded alginate-chitosan coated nanoliposomes (AL-CH-BLF-Lip) to overcome these challenges. The nanocarriers were characterized by dynamic light scattering, high performance liquid chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. The biological activity was analyzed by in vitro antioxidant activity, transdermal absorption, cytotoxicity and AAPH induced HaCaT cell senescence model. The results showed that the size of nanocarriers ranged from 152.13 to 228.90 nm and had a low polydispersity index (0.25−0.36). Chitosan (CH) and alginate (AL) were successfully coated on BLF-loaded nanoliposomes (BLF-Lip), the encapsulation efficiency of BLF-Lip, BLF-loaded chitosan coated nanoliposomes (CH-BLF-Lip) and AL-CH-BLF-Lip were 71.31%, 78.77% and 82.74%, respectively. In addition, BLF-Lip, CH-BLF-Lip and AL-CH-BLF-Lip showed better in vitro release and free radical scavenging ability compared with naked BLF. In particular, the skin permeability of BLF-Lip, CH-BLF-Lip, and AL-CH-BLF-Lip increased 2.1, 2.4 and 2.9 times after 24 h, respectively. Furthermore, the use of nanoliposomes could significantly improve the anti-senescence activity of BLF (p < 0.01). Conclusively, alginate-chitosan coated nanoliposomes are promising delivery systems for BLF that can be used in functional foods and cosmetics.

9.
Food Funct ; 13(7): 4114-4129, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35316314

RESUMEN

Aging can lead to the occurrence of many degenerative diseases, and the most intuitive consequences are mainly manifested on the skin, which is affected by both endogenous and exogenous aging factors and can be used as an ideal model organ for studying aging. 4,4'-Dimethoxychalcone (DMC), a natural flavonoid compound from Angelica sinensis, has been proven to prolong the lifespan of multiple species. However, it is not clear whether it has the effect of delaying skin aging. This study aimed to establish a skin senescent cell model induced by oxidative stress, and further, to analyze the inhibitory effect of DMC on cellular senescence, and explore its molecular mechanisms. We found that treatment of HaCaT cells with 1 mM 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) for 48 h showed significant senescent characteristics, which could be effectively alleviated by pretreatment with the antioxidant N-acetyl-L-cysteine (NAC). DMC significantly inhibited AAPH-induced senescence, and further mechanism studies showed that the activation of autophagy which depended on the phosphorylation of ULK1 at Ser555 was necessary for DMC to alleviate senescence of HaCaT cells. In addition, the mitogen-activated protein kinase (MAPK) signal pathway was also involved in the regulation of autophagy induced by DMC. These results were also validated in UVB-induced photoaging mice. In conclusion, we successfully establish a skin senescent cell model and prove that DMC can be used as a potential therapeutic agent to intervene in skin aging.


Asunto(s)
Envejecimiento de la Piel , Amidinas , Animales , Autofagia , Senescencia Celular , Ratones , Piel , Rayos Ultravioleta/efectos adversos
10.
Front Nutr ; 9: 1024678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386939

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Research on the efficacy of probiotics, prebiotics, and synbiotics on NAFLD patients continues to be inconsistent. The purpose of this study is to evaluate the effectiveness of these microbial therapies on NAFLD. Methods: Eligible randomized-controlled trials reporting the effect of probiotics, prebiotics, or synbiotics in NAFLD were searched in PubMed, Web of Science, Embase, Google scholar, and CNKI databases from 2020 to Jul 2022. The changes in the outcomes were analyzed using standard mean difference (SMD) and 95% confidence intervals (CIs) with a random- or fixed-effects model to examine the effect of microbial therapies. Subgroup analysis, influence and publication bias analysis were also performed. The quality of the eligible studies was evaluated using the Cochrane Risk of Bias Tool. Results: Eleven studies met the inclusion criteria involving 741 individuals. Microbial therapies could improve liver steatosis, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), alkaline phosphatase (ALP), glutamyl transpeptidase (GGT), and homeostasis model assessment-insulin resistance (HOMAI-R) (all P < 0.05). But microbial therapies could not ameliorate body mass index (BMI), energy, carbohydrate, fat intake, fasting blood sugar, HbA1c, insulin, high-sensitivity C-reactive protein (hs-CRP), and hepatic fibrosis of patients with NAFLD. Conclusion: Probiotics, prebiotics, and synbiotics supplementation can potentially improve liver enzymes, lipid profiles, and liver steatosis in patients with NAFLD.

11.
Front Immunol ; 13: 1033471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439093

RESUMEN

Probiotics can maintain or improve health by modulating the response of immune cells in the gastrointestinal tract. However, the mechanisms by which probiotics promote macrophage (Mφ) activity are poorly understood. Here, we evaluated exosomes derived from intestinal epithelial cells treated with Bacillus amyloliquefaciens SC06 (Ba) and investigated the regulation of Mφ phagocytosis, apoptosis, and polarization. We isolated two exosomes from intestinal porcine epithelial cell lines (IPEC-J2) with or without Ba-treatment, named Ba-Exo and Exo, respectively. They had typical sizes and a cup-shaped morphology, and their surfaces presented typical exosomes-associated proteins, including CD63, ALIX, and TSG101. Ba-Exo and Exo could entrer Mφ (3D4/21 cells) effectively. Moreover, an in vitro phagocytosis assay demonstrated that Ba-Exo can promote phagocytosis of Mφ. Similar to Exo, Ba-Exo had no effect on Mφ apoptosis. Furthermore, Ba-Exo significantly increased inducible nitric oxide synthase (iNOS), declined the expression of arginase 1 (Arg1) in Mφ, and stimulated Mφ polarization to M1. To explore the differences in the regulation of Mφ polarization between Ba-Exo and Exo, we performed reverse transcription quantitative polymerase chain reaction analysis of the small RNAs and found that miR-222 increased in the Ba-Exo group compared to that in the Exo group. These results provide a new perspective on the relationship between probiotics and intestinal immunity.


Asunto(s)
Bacillus amyloliquefaciens , Exosomas , Probióticos , Porcinos , Animales , Exosomas/metabolismo , Macrófagos , Activación de Macrófagos , Probióticos/farmacología
12.
Front Aging Neurosci ; 14: 945274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092811

RESUMEN

Background: Early identification of Alzheimer's disease or mild cognitive impairment can help guide direct prevention and supportive treatments, improve outcomes, and reduce medical costs. Existing advanced diagnostic tools are mostly based on neuroimaging and suffer from certain problems in cost, reliability, repeatability, accessibility, ease of use, and clinical integration. To address these problems, we developed, evaluated, and implemented an early diagnostic tool using machine learning and non-imaging factors. Methods and results: A total of 654 participants aged 65 or older from the Nursing Home in Hangzhou, China were identified. Information collected from these patients includes dementia status and 70 demographic, cognitive, socioeconomic, and clinical features. Logistic regression, support vector machine (SVM), neural network, random forest, extreme gradient boosting (XGBoost), least absolute shrinkage and selection operator (LASSO), and best subset models were trained, tuned, and internally validated using a novel double cross validation algorithm and multiple evaluation metrics. The trained models were also compared and externally validated using a separate dataset with 1,100 participants from four communities in Zhejiang Province, China. The model with the best performance was then identified and implemented online with a friendly user interface. For the nursing dataset, the top three models are the neural network (AUROC = 0.9435), XGBoost (AUROC = 0.9398), and SVM with the polynomial kernel (AUROC = 0.9213). With the community dataset, the best three models are the random forest (AUROC = 0.9259), SVM with linear kernel (AUROC = 0.9282), and SVM with polynomial kernel (AUROC = 0.9213). The F1 scores and area under the precision-recall curve showed that the SVMs, neural network, and random forest were robust on the unbalanced community dataset. Overall the SVM with the polynomial kernel was found to be the best model. The LASSO and best subset models identified 17 features most relevant to dementia prediction, mostly from cognitive test results and socioeconomic characteristics. Conclusion: Our non-imaging-based diagnostic tool can effectively predict dementia outcomes. The tool can be conveniently incorporated into clinical practice. Its online implementation allows zero barriers to its use, which enhances the disease's diagnosis, improves the quality of care, and reduces costs.

13.
Mol Metab ; 45: 101149, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33352311

RESUMEN

OBJECTIVE: 7,8-Dihydroxyflavone (7,8-DHF), a small molecular mimetic of brain-derived neurotrophic factor (BDNF), alleviates high-fat diet-induced obesity in female mice in a sex-specific manner by activating muscular tropomyosin-related kinase B (TrkB). However, the underlying molecular mechanism for this sex difference is unknown. Moreover, muscular estrogen receptor α (ERα) plays a critical role in metabolic diseases. Impaired ERα action is often accompanied by metabolic syndrome (MetS) in postmenopausal women. This study investigated whether muscular ERα is involved in the metabolic effects of 7,8-DHF. METHODS: For the in vivo studies, 72 female C57BL/6J mice were given a low-fat diet or high-fat diet, and both received daily intragastric administration of vehicle or 7,8-DHF for 24 weeks. The hypothalamic-pituitary-ovarian (HPO) axis function was assessed by investigating typical sex-related serum hormones and the ovarian reserve. Indicators of menopausal MetS, including lipid metabolism, insulin sensitivity, bone density, and serum inflammatory cytokines, were also evaluated. The expression levels of ERα and other relevant signaling molecules were also examined. In vitro, the molecular mechanism involved in the interplay of ERα and TrkB receptors was verified in differentiated C2C12 myotubes using several inhibitors and a lentivirus short hairpin RNA-knockdown strategy. RESULTS: Long-term oral administration of 7,8-DHF acted as a protective factor for the female HPO axis function, protecting against ovarian failure, earlier menopause, and sex hormone disorders, which was paralleled by the alleviation of MetS coupled with the production of ERα-rich, TrkB-activated, and uncoupling protein 1 (UCP1) high thermogenic skeletal muscle tissues. 7,8-DHF-stimulated transactivation of ERα at serine 118 (S118) and tyrosine 537 (Y537), which was crucial to activate the BDNF/TrkB signaling cascades. In turn, activation of BDNF/TrkB signaling was also required for the ligand-independent activation of ERα, especially at the Y537 phosphorylation site. In addition, Src family kinases played a core role in the interplay of ERα and TrkB, synergistically activating the signaling pathways related to energy metabolism. CONCLUSIONS: These findings revealed a novel role of 7,8-DHF in protecting the function of the female HPO axis and activating tissue-specific ERα, which improves our understanding of this sex difference in 7,8-DHF-mediated maintenance of metabolic homeostasis and provides new therapeutic strategies for managing MetS in women.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor alfa de Estrógeno/metabolismo , Flavonas/metabolismo , Glicoproteínas de Membrana/metabolismo , Síndrome Metabólico/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Receptor alfa de Estrógeno/genética , Femenino , Glucosa/metabolismo , Homeostasis , Inflamación , Hígado/metabolismo , Hígado/patología , Glicoproteínas de Membrana/genética , Menopausia , Síndrome Metabólico/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético , Obesidad , Ovario/metabolismo , Ovario/patología , Proteínas Tirosina Quinasas/genética , Transcriptoma
14.
Elife ; 102021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34227467

RESUMEN

Imbalances in bone formation and resorption cause osteoporosis. Mounting evidence supports that brain-derived neurotrophic factor (BDNF) implicates in this process. 7,8-Dihydroxyflavone (7,8-DHF), a plant-derived small molecular TrkB agonist, mimics the functions of BDNF. We show that both BDNF and 7,8-DHF promoted the proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. These effects might be attributed to the activation of the Wnt/ß-catenin signaling pathway as the expression of cyclin D1, phosphorylated-glycogen synthase kinase-3ß (p-GSK3ß), ß-catenin, Runx2, Osterix, and osteoprotegerin (OPG) was all significantly up-regulated. Knockdown of ß-catenin restrained the up-regulation of Runx2 and Osterix stimulated by 7,8-DHF. In particular, blocking TrkB by its specific inhibitor K252a suppressed 7,8-DHF-induced osteoblastic proliferation, differentiation, and expression of osteoblastogenic genes. Moreover, BDNF and 7,8-DHF repressed osteoclastic differentiation of RAW264.7 cells. The transcription factor c-fos and osteoclastic genes such as tartrate-resistant acid phosphatase (TRAP), matrix metalloprotein-9 (MMP-9), Adamts5 were inhibited by 7,8-DHF. More importantly, 7,8-DHF attenuated bone loss, improved trabecular microarchitecture, tibial biomechanical properties, and bone biochemical indexes in an ovariectomy (OVX) rat model. The current work highlights the dual regulatory effects that 7,8-DHF exerts on bone remodeling.


Asunto(s)
Flavonas/farmacología , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Ovariectomía/efectos adversos , Animales , Remodelación Ósea , Huesos/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ciclina D1 , Modelos Animales de Enfermedad , Femenino , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Osteoprotegerina , Ratas , Factor de Transcripción Sp7/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
15.
Food Funct ; 11(2): 1810-1825, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32057043

RESUMEN

Anti-solvent co-precipitation (ASCP) is the most commonly used method of fabricating food-grade nanoparticles, while the impact of the blending sequence on the formation of nanoparticles lacks research. In this study, 7,8-dihydroxyflavone (7,8-DHF) loaded zein-/sophorolipid nanoparticles with two blending sequences (DHF-Z-S and DHF-Z/S) were successfully fabricated by the ASCP method and used to improve the storage stability and the in vitro bioaccessibility of 7,8-DHF. The results showed that blending sequences significantly affect the physicochemical properties of nanoparticles. DHF-Z-S nanoparticles had smaller particle size, lower polydispersity index and turbidity, and higher negative charge, entrapment efficiency and loading capacity compared to DHF-Z/S nanoparticles. Transmission electron microscopy and scanning electron microscopy revealed that DHF-Z-S and DHF-Z/S nanoparticles have core-shell spherical shape at the nanoscale and sophorolipid changed the surface morphology of zein nanoparticles. Fourier transform infrared spectroscopy and fluorescence spectrum analysis confirmed the presence of effective hydrogen bonding, electrostatic interactions and hydrophobic effects between 7,8-DHF, zein and sophorolipid and the presence of stronger hydrogen bonding and hydrophobic effects in DHF-Z-S nanoparticles. The encapsulated 7,8-DHF was in an amorphous state rather than a crystalline form as determined by X-ray diffraction analysis. Circular dichroism revealed that 7,8-DHF and sophorolipid were capable of changing the secondary structure of zein remarkably. More importantly, compared to DHF-Z/S nanoparticles, the DHF-Z-S nanoparticles possessed higher storage stability and in vitro bioaccessibility. Collectively, DHF-Z-S nanoparticles developed in this study might be a promising means of encapsulating, protecting and delivering hydrophobic nutraceuticals for applications in functional foods.


Asunto(s)
Flavonas , Nanopartículas/química , Ácidos Oléicos/química , Zeína/química , Composición de Medicamentos , Flavonas/química , Flavonas/farmacocinética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Concentración Osmolar , Tamaño de la Partícula
16.
Int J Biol Macromol ; 146: 179-192, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31899246

RESUMEN

7,8-dihydroxyflavone (7,8-DHF), a tyrosine kinase B (TrkB) receptor agonist, can mimick physiological actions of brain-derived neurotrophic factor (BDNF) to attenuate neurogenic disease. However, its use as a functional food, is limited by its low-water solubility, chemical instability, and poor bioavailability. The purpose of this work is to fabricate stable 7,8-DHF loaded zein/lactoferrin (LF) composite nanoparticles (zein/LF-DHF) to overcome these challenges. Results showed that mean particle size of zein/LF nanoparticles was about 74 nm with low polydispersity index (<0.200) and turbidity (<0.300) values. Zein/LF nanoparticles had good stability against pH (3.0-9.0), ionic strengths (0-500 mM NaCl at neutral pH) and long-term storage. Zein/LF nanoparticles showed spherical structures formed by hydrogen bonding and hydrophobic interactions, however, LF changed surface morphology of zein nanoparticles as observed by scanning electron microscope. X-ray diffraction indicated 7,8-DHF was presented in an amorphous state inside zein/LF nanoparticles. Most importantly, zein/LF-DHF had good redispersibility, and increased the encapsulation efficiency, chemical stability, water solubility and bioaccessibility of 7,8-DHF. Collectively, zein/LF nanoparticles are promising delivery systems for 7,8-DHF in functional foods.


Asunto(s)
Flavonas/química , Lactoferrina/química , Nanopartículas/química , Zeína/química , Concentración de Iones de Hidrógeno
17.
Food Funct ; 10(8): 5215-5227, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31384856

RESUMEN

7,8-Dihydroxyflavone (7,8-DHF), as a high-affinity TrkB receptor agonist, has been extensively explored in many human disorders involving brain-derived neurotrophic factor (BDNF) such as Alzheimer's disease, Parkinson's disease, depression, and obesity. However, to date, the transepithelial transport mechanisms of 7,8-DHF in the intestines remain unclear. The aim of our work was to quantify and to characterize in vitro transport of naturally occurring 7,8-DHF distinguished by its physicochemical and pharmacological properties. We discussed the transport mechanisms of 7,8-DHF using the Caco-2 cell model to determine the bi-directional permeability with different environmental factors (time, concentration, pH, metabolic inhibitors etc.). The influx and efflux characteristics of 7,8-DHF were also clarified. 7,8-DHF was poorly transported across Caco-2 cell monolayers by mainly passive diffusion via a transcellular pathway and not a paracellular pathway. The transport of 7,8-DHF was time and concentration-dependent in both the apical (AP) to basolateral (BL) side and the reverse direction. Interestingly, decreasing the pH from 7.4 to 6.0 markedly enhanced 7,8-DHF transport. It is noteworthy that 7,8-DHF transport was strongly inhibited by metabolic inhibitors and was highly dependent on temperature. The efflux ratio (ER) values at different concentrations were all above 1.5, indicating the existence of the efflux transporter. We found that breast cancer resistance protein (BCRP) was not involved in 7,8-DHF secretion and that the transport mechanism of 7,8-DHF was passive transport with an active efflux mediated by P-glycoprotein (P-gp) and multidrug resistance associated proteins (MRPs), particularly MRP 2. Moreover, the use of various influx transporter inhibitors in Caco-2 cells showed that organic cation transporters (OCTs) and organic anion-transporting polypeptides (OATPs) participated in 7,8-DHF transport. Taken together, the elucidated transport characteristics of 7,8-DHF provide useful information for designing novel and efficient delivery systems and avoiding food-food or food-drug interactions.


Asunto(s)
Células Epiteliales/metabolismo , Flavonas/metabolismo , Mucosa Intestinal/metabolismo , Receptor trkB/agonistas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Células CACO-2 , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico , Receptor trkB/genética , Receptor trkB/metabolismo
18.
Jpn J Infect Dis ; 72(4): 243-249, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30918145

RESUMEN

A case-control study was conducted in Shandong from January to December 2017 to explore the relationship between sleep quality and the risk of active pulmonary tuberculosis (PTB). Seventy-nine patients with type 2 diabetes mellitus coincident with newly diagnosed pulmonary tuberculosis (DM-PTB) and 169 age, sex, and DM course frequency-matched controls (DM alone) were enrolled. Univariate and multivariable unconditional logistic regression analyses were conducted. We further conducted subgroup analyses to explore the relationship between sleep quality and PTB risk, including DM course (≤5 and >5 years), age, sex, and the presence of overweight or obesity (body mass index (BMI) > 24 kg/m2). Multivariate logistic regression demonstrated that poor sleep quality had a borderline negative association with the odds of PTB (P = 0.065). Subgroup multivariate analyses showed that poor sleep quality increased the risk of PTB to more than 3 times among patients with a DM course > 5 years (odds ratio 3.31, 95% confidence interval: 1.08-10.13; P = 0.036) after adjusting for potential confounding factors including residential area, educational level, BMI, history of contact with tuberculosis patients, smoking, alcohol consumption, physical exercise, immune status, and frequency of blood glucose monitoring. In conclusion, poor sleep quality is an independent risk factor of PTB among DM patients with a course of > 5 years, which indicates significant epidemiological implications for PTB control.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Sueño , Tuberculosis Pulmonar/epidemiología , Adulto , Anciano , Estudios de Casos y Controles , China/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Factores de Riesgo
19.
J Chromatogr A ; 1519: 74-82, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28890269

RESUMEN

Black peanut skins as a byproduct from peanut industry contain abundant anthocyanins, evaluated as 8.61±0.27mg/g dry black peanut skins, are currently poorly exploited. In this work, four anthocyanins and three major flavonols were detected and identified by HPLC-PDA-ESI-MS/MS from the acidified water extract of black peanut skins of Arachis hypogaea L. After preliminary removal of flavonols by ethyl acetate (EtOAc), further purification of the anthocyanins was conducted using a combination of Amberlite XAD-7HP and ODS-AQ-HG column chromatography methods. Two most abundant monomeric anthocyanins cyanidin-3-O-sophoroside (5.77±0.42mg) and cyanidin-3-O-sambubioside (4.10±0.17mg) were eventually obtained from 2g dry black peanut skins, and their purities were determined by HPLC-PDA as 97.29% and 98.28% at the yields of 87.47% and 64.27% on the basis of their total amount in the crude extracts, respectively. These sequential treatments can be easily adapted to large-scale fractionation of pure anthocyanin monomers.


Asunto(s)
Antocianinas/análisis , Antocianinas/aislamiento & purificación , Arachis/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Extractos Vegetales/química
20.
Ying Yong Sheng Tai Xue Bao ; 24(2): 373-8, 2013 Feb.
Artículo en Zh | MEDLINE | ID: mdl-23705381

RESUMEN

Taking five typical courtyard forests and a non-forest courtyard in southern mountains areas of Jinan as test objects, a synchronous observation was conducted on the air negative ion concentration and related meteorological factors in March-December, 2010. The air negative ion concentration in the test courtyards showed an obvious seasonal variation, being in the order of summer > autumn > spring > winter. The diurnal variation of the air negative ion concentration presented a double peak curve, with the maximum in 10:00 - 11:00 and 16:00 - 17:00 and the minimum around 12:00. The daily air quality was the best at 10:00 and 16:00, and better in afternoon than in the morning. Summer time and garden sketch mode had the best air quality in a year. The mean annual air negative ion and the coefficient of air ion (CI) of the test courtyards were in the order of garden sketch > economic fruit forest > natural afforested forest > flowers and bonsai > farm tourist > non-forest, with the air negative ion concentration being 813, 745, 695, 688, 649, and 570 ions.cm-3, and the CI being 1.22, 1.11, 0.85, 0.84, 0.83, and 0.69, respectively. It could be concluded that garden sketch was the ideal courtyard forest mode. The air negative ion concentration was significantly positively correlated with air temperature and relative humidity, but irrelevant to light intensity.


Asunto(s)
Aire/análisis , Aniones/análisis , Ecosistema , Árboles/crecimiento & desarrollo , China , Ciudades , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA