Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 32(4): 4887-4901, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439229

RESUMEN

In underwater wireless optical communication, orbital angular momentum (OAM) states suffer from turbulence distortions. This study aims to investigate the effectiveness of auto-focusing and OAM entanglement of the beams in reducing the turbulence effects. We implement the single-phase approximation and the extended Huygens-Fresnel principle to derive the detection probability of the entangled Airy beams under unstable oceanic turbulence. The results show that auto-focusing can protect the signal OAM mode and suppress modal crosstalks, while entangled OAM states can further enhance the resistance against oceanic turbulence around the focus position. The numerical analysis demonstrates that after the auto-focusing position, the beams evolve in completely opposite directions, indicating that the focal length should be modulated according to the length of a practical link to enhance received signals. These findings suggest that entangled auto-focusing vortex beams may be a desirable light source in underwater communication systems.

2.
Phys Rev Lett ; 132(24): 240801, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949366

RESUMEN

Quantum networks promise unprecedented advantages in information processing and open up intriguing new opportunities in fundamental research, where network topology and network nonlocality fundamentally underlie these applications. Hence, the detections of network topology and nonlocality are crucial, which, however, remain an open problem. Here, we conceive and experimentally demonstrate to determine the network topology and network nonlocality hosted by a triangle quantum network comprising three parties, within and beyond Bell theorem, with a general witness operator for the first time. We anticipate that this unique approach may stimulate further studies toward the efficient characterization of large complex quantum networks so as to better harness the advantage of quantum networks for quantum information applications.

3.
Phys Rev Lett ; 132(20): 203801, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829094

RESUMEN

Non-Hermitian systems can exhibit unique quantum phases without any Hermitian counterparts. For example, the latest theoretical studies predict a new surprising phenomenon that bulk bands can localize and dissipate prominently at the system boundary, which is dubbed the non-Hermitian edge burst effect. Here we realize a one-dimensional non-Hermitian Su-Schrieffer-Heeger lattice with bulk translation symmetry implemented with a photonic quantum walk. Employing time-resolved single-photon detection to characterize the chiral motion and boundary localization of bulk bands, we determine experimentally that the dynamics underlying the non-Hermitian edge burst effect is due to the interplay of non-Hermitian skin effect and imaginary band gap closing. This new non-Hermitian physical effect deepens our understanding of quantum dynamics in open quantum systems.

4.
Arterioscler Thromb Vasc Biol ; 43(5): 726-738, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951065

RESUMEN

BACKGROUND: S1P (sphingosine-1-phosphate) has been reported to possess vasodilatory properties, but the underlying pathways are largely unknown. METHODS: Isolated mouse mesenteric artery and endothelial cell models were used to determine S1P-induced vasodilation, intracellular calcium, membrane potentials, and calcium-activated potassium channels (KCa2.3 and KCa3.1 [endothelial small- and intermediate-conductance calcium-activated potassium channels]). Effect of deletion of endothelial S1PR1 (type 1 S1P receptor) on vasodilation and blood pressure was evaluated. RESULTS: Mesenteric arteries subjected to acute S1P stimulation displayed a dose-dependent vasodilation response, which was attenuated by blocking endothelial KCa2.3 or KCa3.1 channels. In cultured human umbilical vein endothelial cells, S1P stimulated immediate membrane potential hyperpolarization following activation of KCa2.3/KCa3.1 with elevated cytosolic Ca2+. Further, chronic S1P stimulation enhanced expression of KCa2.3 and KCa3.1 in human umbilical vein endothelial cells in dose- and time-dependent manners, which was abolished by disrupting either S1PR1-Ca2+ signaling or downstream Ca2+-activated calcineurin/NFAT (nuclear factor of activated T-cells) signaling. By combination of bioinformatics-based binding site prediction and chromatin immunoprecipitation assay, we revealed in human umbilical vein endothelial cells that chronic activation of S1P/S1PR1 promoted NFATc2 nuclear translocation and binding to promoter regions of KCa2.3 and KCa3.1 genes thus to upregulate transcription of these channels. Deletion of endothelial S1PR1 reduced expression of KCa2.3 and KCa3.1 in mesenteric arteries and exacerbated hypertension in mice with angiotensin II infusion. CONCLUSIONS: This study provides evidence for the mechanistic role of KCa2.3/KCa3.1-activated endothelium-dependent hyperpolarization in vasodilation and blood pressure homeostasis in response to S1P. This mechanistic demonstration would facilitate the development of new therapies for cardiovascular diseases associated with hypertension.


Asunto(s)
Hipertensión , Vasodilatación , Ratones , Humanos , Animales , Presión Sanguínea , Endotelio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Homeostasis , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
5.
J Opt Soc Am A Opt Image Sci Vis ; 41(5): 943-951, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856580

RESUMEN

Compared to horizontal transmission, the oceanic dissipation rate and temperature-salinity distribution ratio are no longer constant but vary with depth, imposing greater complexity on oceanic turbulence when beams propagate through a slant path and resulting in more limitations on the performance of underwater wireless optical communication (UWOC) links. This study focuses on investigating the performance, especially the auto-focusing characteristic, of auto-focusing hypergeometric Gaussian (AHGG) beams propagating along slant paths in oceanic turbulence. We theoretically derive the spatial coherence radius and the relative probability of the orbital angular momentum (OAM) mode for AHGG beams passing through such links. Numerical simulations reveal that AHGG beams exhibit superior propagation performance compared to hypergeometric Gaussian beams. Lower beam orders and OAM numbers contribute to improved performance, while careful selection of auto-focusing length can tangibly enhance detection performance as well. Additionally, tidal velocities and wind speeds have nonnegligible effects on OAM signal probability. Our results further demonstrate that surface buoyancy flux, temperature gradients, and waterside friction velocity significantly affect beam transmission under varying wind conditions. These findings, particularly controlling the auto-focusing length of AHGG beams to match the transmission distance, provide valuable insights for enhancing the quality of UWOC links.

6.
Cell Mol Life Sci ; 80(2): 38, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629913

RESUMEN

BACKGROUND: Vascular endothelial dysfunction is regarded as an early event of hypertension. Galectin-3 (Gal-3) is known to participate in various pathological processes. Whilst previous studies showed that inhibition of Gal-3 effectively ameliorates angiotensin II (Ang II)-induced atherosclerosis or hypertension, it remains unclear whether Ang II regulates Gal-3 expression and actions in vascular endothelium. METHODS: Using techniques of molecular biology and myograph, we investigated Ang II-mediated changes in Gal-3 expression and activity in thoracic aortas and mesenteric arteries from wild-type and Gal-3 gene deleted (Gal-3-/-) mice and cultured endothelial cells. RESULTS: The serum level of Gal-3 was significantly higher in hypertensive patients or in mice with chronic Ang II-infusion. Ang II infusion to wild-type mice enhanced Gal-3 expression in the aortic and mesenteric arteries, elevated systolic blood pressure and impaired endothelium-dependent relaxation of the thoracic aortas and mesenteric arteries, changes that were abolished in Gal-3-/- mice. In human umbilical vein endothelial cells, Ang II significantly upregulated Gal-3 expression by promoting nuclear localization of Yes-associated protein (YAP) and its interaction with transcription factor Tead1 with enhanced YAP/Tead1 binding to Gal-3 gene promoter region. Furthermore, Gal-3 deletion augmented the bioavailability of nitric oxide, suppressed oxidative stress, and alleviated inflammation in the thoracic aorta of Ang II-infused mice or endothelial cells exposed to Ang II. CONCLUSIONS: Our results demonstrate for the first time that Ang II upregulates Gal-3 expression via increment in YAP nuclear localization in vascular endothelium, and that Gal-3 mediates endothelial dysfunction contributing to the development of hypertension.


Asunto(s)
Angiotensina II , Hipertensión , Ratones , Humanos , Animales , Angiotensina II/farmacología , Angiotensina II/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Hipertensión/metabolismo , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Endotelio Vascular/metabolismo , Presión Sanguínea
7.
Eur Spine J ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847817

RESUMEN

BACKGROUND: Thoracic ossification of the ligamentum flavum (TOLF), a rare condition more prevalent in East Asia, is managed through open and endoscopic surgical approaches. Determining the superior surgical option remains unclear. This study assesses the safety and clinical outcomes associated with these approaches in TOLF patients. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a systematic literature search up to August 5, 2023, across PubMed, Scopus, EMBASE, Web of Science, Cochrane, and ClinicalTrials.gov. We included randomized controlled trials and cohort studies reporting complication rates, mJOA (modified Japanese Orthopedic Association) scores, JOA scores, VAS (Visual Analog Scale) scores, or hospitalization duration for both open and endoscopic surgeries in TOLF patients. RESULTS: We analyzed 37 studies encompassing 1,646 TOLF patients using a random-effects model. Our findings revealed a significant difference in complication rates (overall complication rates: 0.12; 95% CI: 0.07, 0.19; p < 0.01; I2: 69%; quality of evidence: moderate), with lower complication rates in the endoscopy group. However, no significant differences were observed in JOA scores (overall JOA: 8.35; 95% CI: 7.16, 9.54; p = 0.12; I2: 99%; quality of evidence: very low), VAS scores (overall VAS: 1.31; 95% CI: 1.03, 1.59; p = 0.35; I2: 91%; quality of evidence: very low), or hospitalization duration (hospital stay: 10.83 days; 95% CI: 6.86, 14.80; p = 0.35; I2: 91%; quality of evidence: very low) between the open and endoscopic groups. CONCLUSIONS: This meta-analysis reports lower complication rates and improved postoperative mJOA scores for endoscopic surgery in TOLF patients compared to open surgery. It represents the first comprehensive evaluation of clinical outcomes and safety of different surgical approaches for TOLF patients. Further randomized controlled trials are essential to validate these findings.

8.
J Integr Neurosci ; 23(5): 103, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38812389

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is a prominent cause of neonatal mortality and neurodevelopmental disorders; however, effective therapeutic interventions remain limited. During neonatal hypoxic-ischemic injury events, increased reactive oxygen species (ROS) production and decreased antioxidant levels lead to the induction of oxidative stress, which plays a pivotal role in the pathological process of neonatal HIE. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key endogenous antioxidant transcription factor that protects against oxidative stress by promoting the transcription of various antioxidant genes. It has been demonstrated that Nrf2 signaling pathway activation by different compounds may protect against neonatal HIE. This review outlines the role of oxidative stress in neonatal HIE and summarizes the impact of antioxidants on neonatal HIE via activation of the Nrf2 signaling pathway. In conclusion, Nrf2 signaling pathway potentially exerts antioxidant, anti-inflammatory, antiapoptotic and antiferroptotic effects, thereby emerging as a focal point for future neonatal HIE treatment strategies.


Asunto(s)
Hipoxia-Isquemia Encefálica , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Recién Nacido , Animales , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Antioxidantes/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
9.
Opt Express ; 31(1): 774-775, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36607010

RESUMEN

Erratum to "Creating perfect composite vortex beams with a single all-dielectric geometric metasurface." [Opt. Express30, 40231 (2022)10.1364/OE.475158]. Here are some mistakes in the paper, which needs to be revised.

10.
Opt Lett ; 48(9): 2409-2412, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126285

RESUMEN

Topological charge (TC) is generally acknowledged as an important attribute of an optical vortex (OV), which indicates the twisted characterization of the wavefront. In most circumstances, the TC remains constant as an integer or fraction along the azimuthal direction. Herein, by transforming the TCs into the trigonometric functions of the azimuthal angle to tailor the spiral phase distributions, we numerically demonstrate generating perfect vortex beams (PVBs) with sine-function TC based on the all-dielectric geometric metasurfaces, whose unit structure is optimized to an ideal half-wave plate. To seek the intrinsic advancements of the proposed PVBs, their orbital angular momentum (OAM) as well as optical gradient force distributions are calculated for diverse particle manipulation. We believe our proposed scheme is desired to provide an original thought for OAM manipulation, information storage, and optical communication.

11.
Phys Rev Lett ; 131(15): 150203, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897772

RESUMEN

Heisenberg-type measurement uncertainty relations (MURs) of two quantum observables are essential for contemporary research in quantum foundations and quantum information science. Going beyond, here we report the first experimental study of MUR of three quantum observables. We establish rigorously MURs for triplets of unbiased qubit observables as combined approximation errors lower bounded by an incompatibility measure, inspired by the proposal of Busch et al. [Phys. Rev. A 89, 012129 (2014)PLRAAN1050-294710.1103/PhysRevA.89.012129]. We develop a convex programming protocol to numerically find the exact value of the incompatibility measure and the optimal measurements. We propose a novel implementation of the optimal joint measurements and present several experimental demonstrations with a single-photon qubit. We stress that our method is universally applicable to the study of many qubit observables. Besides, we theoretically show that MURs for joint measurement can be attained by sequential measurements in two of our explored cases. We anticipate that this work may stimulate broad interests associated with Heisenberg's uncertainty principle in the case of multiple observables, enriching our understanding of quantum mechanics and inspiring innovative applications in quantum information science.

12.
J Opt Soc Am A Opt Image Sci Vis ; 40(3): 637-644, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37133048

RESUMEN

Vortex X-waves with coupling effects of orbital angular momentum (OAM) and spatiotemporal invariance are introduced into the research of underwater wireless optical communication systems (UWOCSs). We establish the OAM probability density of vortex X-waves and channel capacity of UWOCS using Rytov approximation and correlation function. Furthermore, an in-depth analysis of OAM detection probability and channel capacity is performed on vortex X-waves carrying OAM in von Kármán oceanic turbulence with anisotropy. The results show that an increase in OAM quantum number results in a "hollow X" shape in the received plane, where the energy of vortex X-waves is injected into the lobes, reducing the received probability of the vortex X-waves transmitted to the receiving end. As the Bessel cone angle increases, the energy gradually concentrates toward the energy distribution center, and the vortex X-waves become more localized. Our research may trigger the development of UWOCS for bulk data transfer based on OAM encoding.

13.
Clin Oral Investig ; 28(1): 64, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38158464

RESUMEN

OBJECTIVES: This study aimed to investigate the functions of 19 types of Wnt ligands during the process of osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs), with particular attention to WNT3A and WNT4. MATERIALS AND METHODS: The expression levels of 19 types of Wnt ligands were examined using real-time quantitative polymerase chain reaction (real-time qPCR) during hPDLSCs osteogenic differentiation at 7, 10, and 14 days. Knockdown of WNT3A and WNT4 expression was achieved using adenovirus vectors, and conditioned medium derived from WNT3A and WNT4 overexpression plasmids was employed to investigate their roles in hPDLSCs osteogenesis. Osteogenic-specific genes were analyzed using real-time qPCR. Alkaline phosphatase (ALP) and alizarin red S activities and staining were employed to assess hPDLSCs' osteogenic differentiation ability. RESULTS: During hPDLSCs osteogenic differentiation, the expression of 19 types of Wnt ligands varied, with WNT3A and WNT4 showing significant upregulation. Inhibiting WNT3A and WNT4 expression hindered hPDLSCs' osteogenic capacity. Conditioned medium of WNT3A promoted early osteogenic differentiation, while WNT4 facilitated late osteogenesis slightly. CONCLUSION: Wnt ligands, particularly WNT3A and WNT4, play an important role in hPDLSCs' osteogenic differentiation, highlighting their potential as promoters of osteogenesis. CLINICAL RELEVANCE: Given the challenging nature of alveolar bone regeneration, therapeutic strategies that target WNT3A and WNT4 signaling pathways offer promising opportunities. Additionally, innovative gene therapy approaches aimed at regulating of WNT3A and WNT4 expression hold potential for improving alveolar bone regeneration outcomes.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Humanos , Osteogénesis/genética , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Células Madre , Diferenciación Celular/genética , Células Cultivadas
14.
Home Health Care Serv Q ; 42(2): 124-141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36594495

RESUMEN

Globally, the number of people living with dementia is expected to triple by 2050 owing primarily to the aging population. Dementia is a chronic and progressive disease that affects an estimated 5-8% of the general population aged 60 and above at any given time. This qualitative study aimed to investigate caregivers' overall perceptions, challenges, and coping strategies in dementia care in Singapore. Purposive sampling was used to select the study's sample. Eight Singaporeans were interviewed in semi-structured, in-depth interviews. Three themes emerged from the data analysis for each research question: overall perceptions (i.e. less freedom, strained family relationships, and improved self-competency), challenges (i.e. managing dementia symptoms, emotional drain, and decision-making), and coping mechanisms (i.e. making time for myself, religious belief, and seeking external support). Knowing about these challenges and coping mechanisms allows practitioners to help caregivers to reduce personal struggles, thus improving the patient's and caregiver's quality of life.


Asunto(s)
Cuidadores , Demencia , Humanos , Anciano , Cuidadores/psicología , Demencia/terapia , Demencia/psicología , Calidad de Vida , Singapur , Investigación Cualitativa
15.
BMC Oral Health ; 23(1): 329, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237299

RESUMEN

BACKGROUND: The cadherin-4 gene (CDH4), a member of the cadherin family genes, encodes R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. The function of CDH4 in OSCC (oral squamous cell carcinoma) is unknown. MATERIALS AND METHODS: We use the Cancer Genome Atlas (TCGA) database to find the expression of CDH4 in OSCC is more than normal tissue. Our tissue samples also confirmed that CDH4 gene was highly expressed in OSCC. The related cell function assay detected that CDH4 promotes the ability of cell proliferation, migration, self-renewal and invasion. Cell staining experiment confirmed that the change of CDH4 expression would change the cell mortality. The western blot of GPX4 (glutathione-dependent peroxidase-4), GSH (reduced glutathione) test assay and MDA(Malondialdehyde) test assay show that the expression of CDH4 may resist the sensitivity of ferropotosis in OSCC. RESULTS: CDH4 was upregulated in OSCC samples and was correlation with poor survival of patients. High expression of CDH4 effectively promotes the proliferation, mobility of OSCC cells and reduce the sensitivity of OSCC cells to ferroptosis. CDH4 is positively correlated with EMT pathway genes, negatively correlated with fatty acid metabolism pathway genes and peroxisome pathway genes, and positively correlated with ferroptosis suppressor genes in OSCC. CONCLUSIONS: These results indicate that CDH4 may play a positive role in tumor progression and resistance ferroptosis and may be a potential therapeutic target for OSCC.


Asunto(s)
Cadherinas , Ferroptosis , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Cadherinas/genética
16.
Opt Express ; 30(12): 20185-20193, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224769

RESUMEN

Quantum coherence has been considered as a resource for quantum information process in recent years. Sharing the quantum resource distantly is a precondition for quantum communication. In this paper, we explore the quantum coherence properties of the prepared state starting from initially incoherent thermal light source. It is shown that the quantum coherence is directly proportional to the dimension of Hilbert space and therefore employ the orbital angular momentum (OAM) to encode resources. The distribution of biphoton thermal OAM state via the one-sided noisy channel (non-Kolmogorov turbulent atmosphere) is then investigated. It is found that the prepared OAM state can have large amount of quantum coherence, which is maximized when the thermal source is completely incoherent. The turbulence effects on quantum coherence are studied and compared to those on the fidelity and quantum channel capacity. Contrasting to the monotonic decay, the dynamics of coherence displays a peak during the propagation and the mechanism behind is presented. Finally, the dynamics of quantum thermal state can be more robust than that of Bell-like pure state since more interference can be induced. We believe our results is of importance to OAM quantum communication using quantum coherence as a resource.

17.
Opt Express ; 30(2): 2780-2791, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209411

RESUMEN

Superoscillation is a kind of phenomenon which can generate oscillation faster than the fastest component of a band-limited function. For optics, superoscillation is generated by coherence of low spatial frequency waves. It can bring a localized region named "hot spot", which has a smaller size than the diffraction-limit, and this character has potential applicaions in super-resolution imaging. Using a high-order radially polarized Laguerre-Gaussian beam tightly focused by high-NA objective lens, we can easily obtain and control the superoscillation hot spot. Using a metasurface, which has compact volume and sub-wavelength pixel size, we can generate the high-order radially polarized Laguerre-Gaussian beam more simply than conventional methods like using a liquid crystal mode converter. We first analyze the properties of unit cells of the metasurface and simulate the performance of the metasurface. Then we analyze the property of the tightly focused high-order radially polarized Laguerre-Gaussian beam and design a super-resolution imaging system using our designed metasurface. Therefore, the 2-fold lateral resolution enhancement is realized in our approach. This method can be used to improve lateral resolution in conventional confocal imaging systems.

18.
Opt Express ; 30(22): 40231-40242, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298959

RESUMEN

Optical vortex beam carrying orbit angular momentum has been extensively researched and applied recently. Among which a perfect vortex beam (PVB) has attracted much attention owing to its topological charge (TC)-irrelevant intensity profile. However, the morphology singularity, as well as implementation complexity of the PVB tie the degree of freedom for multiplexing. Herein, by introducing the concept of a composite vortex beam, we originally propose a novel kind of PVB - perfect composite vortex beam (PCVB) - which possesses a rosette-like intensity pattern that is exactly correlated with the TC and can be directly generated using a single all-dielectric geometric metasurface rather than bulky optical systems. We numerically simulate the broadband generation of the proposed PCVB with various TCs, sizes, and rotation angles. To further explore the potential of our design in practical applications, we demonstrated the coaxial array of the PCVBs and detected their optical angular force for manipulating nanoparticles. We believe that our fruitage may pave a desirable avenue for optical communication, information processing, and optical manipulation.

19.
Phys Rev Lett ; 129(15): 150401, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36269952

RESUMEN

While Bell nonlocality of a bipartite system is counterintuitive, multipartite nonlocality in our many-body world turns out to be even more so. Recent theoretical study reveals in a theory-agnostic manner that genuine multipartite nonlocal correlations cannot be explained by any causal theory involving fewer-partite nonclassical resources and global shared randomness. Here, we provide a Bell-type inequality as a test for genuine multipartite nonlocality in network by exploiting a matrix representation of the causal structure of a multipartite system. We further present experimental demonstrations that both four-photon GHZ state and generalized four-photon GHZ state significantly violate the inequality, i.e., the observed four-partite correlations resist explanations involving three-way nonlocal resources subject to local operations and common shared randomness, hence confirming that nature is boundless multipartite nonlocal.

20.
Phys Rev Lett ; 128(4): 040402, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148126

RESUMEN

Quantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether complex numbers need to be given a fundamental role in the theory has been debated since its pioneering days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios that cannot be modeled by the natural real-number analog of standard quantum theory. Here, we tailor such tests for implementation in state-of-the-art photonic systems. We experimentally demonstrate quantum correlations in a network of three parties and two independent EPR sources that violate the constraints of real quantum theory by over 4.5 standard deviations, hence disproving real quantum theory as a universal physical theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA