Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 47(7): 1798-1801, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363738

RESUMEN

Some rules of the diffractive deep neural network (D2NN) are discovered. They reveal that the inner product of any two optical fields in D2NN is invariant and the D2NN acts as a unitary transformation for optical fields. If the output intensities of the two inputs are separated spatially, the input fields must be orthogonal. These rules imply that the D2NN is not only suitable for the classification of general objects but also more suitable for applications aimed at optical orthogonal modes. Our simulation shows the D2NN performs well in applications like mode conversion, mode multiplexing/demultiplexing, and optical mode recognition.


Asunto(s)
Redes Neurales de la Computación , Simulación por Computador
2.
Opt Express ; 29(2): 996-1010, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726329

RESUMEN

We theoretically and numerically investigate the generation and evolution of different pulsed terahertz (THz) singular beams with an ultrabroad bandwidth (0.1-40 THz) in long gas-plasma filaments induced by a shaped two-color laser field, i.e., a vortex fundamental pulse (ω0) and a Gaussian second harmonic pulse (2ω0). Based on the unidirectional propagation model under group-velocity moving reference frame, the simulating results demonstrate that three different THz singular beams, including the THz necklace beams with a π-stepwise phase profile, the THz angular accelerating vortex beams (AAVBs) with nonlinear phase profile, and the THz vortex beams with linear phase profile, are generated. The THz necklace beams are generated first at millimeter-scale length. Then, with the increase of the filament length, THz AAVBs and THz vortex beams appear in turn almost periodically. Our calculations confirm that all these different THz singular beams result from the coherent superposition of the two collinear THz vortex beams with variable relative amplitudes and conjugated topological charges (TCs), i.e., +2 and -2. These two THz vortex beams could come from the two four-wave mixing (FWM) processes, respectively, i.e., ω0+ω0-2ω0→ωTHz and -(ω0+ω0) + 2ω0→ωTHz. The evolution of the different THz singular beams depends on the combined effect of the pump ω0-2ω0 time delay and the separate, periodical, and helical plasma channels. And the TC sign of the generated THz singular beams can be easily controlled by changing the sign of the ω0-2ω0 time delay. We believe that these results will deepen the understanding of the THz singular beam generation mechanism and orbital angular momentum (OAM) conversion in laser induced gas-filamentation.

3.
Opt Express ; 27(11): 16103-16110, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163796

RESUMEN

This paper proposes a liquid crystal-based order adjustable q-plate system. The system, which is solid-state and electrically controlled without any mechanical components, consists of several bit cells and one symbol cell. The bit cells can be electrically selected whether to modulate the beam. The magnitude of the order of the q-plate system can be controlled by activating specific bit cells. And the sign of the order can be changed by controlling the voltages in the symbol cell. The whole system can realize the function of the order adjustable q-plate with the order ranging from -2n + 1 to 2n-1 with n bit cells. In our experiment, the system with 4 bits is verified. Based on the q-plate system, the vector beams and optical vortexes with the orders ranging from -15 to 15 can be generated.

4.
Opt Lett ; 44(4): 795-798, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767989

RESUMEN

Vector beams with different polarization topological orders (PTOs) are the eigenmodes of traditional optical fibers and are orthogonal to each other, so the PTO multiplexing channel is a promising candidate for the oncoming generation of optical communication. Here we demonstrate experimentally a PTO sorting system with high separation resolution based on the diffractive splitting (DS) method. Our experiments show that our design with the DS method helps to enhance the separation resolution to 77.5% from 58%, compared to a design without the application of a DS method. Theoretically, to increase the copy number can promote the separation resolution further. This Letter provides a high-resolution way to decode information from PTO division multiplexing.

5.
Opt Lett ; 44(4): 887-890, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30768012

RESUMEN

Converting a Gaussian mode to a vortex beam is much more inconvenient in the terahertz (THz) region than in the near-infrared (NIR) region due to underdevelopment of THz components and strong THz diffraction. This Letter reports the direct generation of THz vortex pulses by optical difference-frequency between two NIR chirped pulses with different topological charges (TCs). By designing a passive and transmissive device for a collinear NIR pulse pair with conjugated TCs, we have experimentally obtained stable THz vortex pulses with a TC value of 2 or -2. The process needs no THz components and so is flexible to be realized and has promising applications in the THz field.

6.
Opt Lett ; 43(2): 295, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29328263

RESUMEN

This publisher's note corrects an error in one of the authors' names and an error in one of the grant numbers in Opt. Lett.42, 4263 (2017).

7.
ACS Appl Mater Interfaces ; 14(15): 17889-17898, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35404567

RESUMEN

Copper thiocyanate (CuSCN) is a p-type semiconductor that exhibits hole-transport and wide-band gap (∼3.9 eV) characteristics. However, the conductivity of CuSCN is not sufficiently high, which limits its potential application in optoelectronic devices. Herein, CuSCN thin films were exposed to chlorine using a dry etching system to enhance their electrical properties, yielding a maximum hole concentration of 3 × 1018 cm-3. The p-type CuSCN layer was then deposited onto an n-type gallium nitride (GaN) layer to form a prototypical ultraviolet-based photodetector. X-ray photoelectron spectroscopy further demonstrated the interface electronic structures of the heterojunction, confirming a favorable alignment for holes and electrons transport. The ensuing p-CuSCN/n-GaN heterojunction photodetector exhibited a turn-on voltage of 2.3 V, a responsivity of 1.35 A/W at -1 V, and an external quantum efficiency of 5.14 × 102% under illumination with ultraviolet light (peak wavelength of 330 nm). The work opens a new pathway for making a plethora of hybrid optoelectronic devices of inorganic and organic nature by using p-type CuSCN as the hole injection layer.

8.
Sci Rep ; 6: 33837, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27666528

RESUMEN

Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA