RESUMEN
HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.
Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca nemestrina , VIH-1/genética , Genómica , Virus de la Inmunodeficiencia de los Simios/genéticaRESUMEN
Tetherin prevents viral cross-species transmission by inhibiting the release of multiple enveloped viruses from infected cells. With the evolution of simian immunodeficiency virus of chimpanzees (SIVcpz), a pandemic human immunodeficiency virus type 1 (HIV-1) precursor, its Vpu protein can antagonize human tetherin (hTetherin). Macaca leonina (northern pig-tailed macaque [NPM]) is susceptible to HIV-1, but host-specific restriction factors limit virus replication in vivo. In this study, we isolated the virus from NPMs infected with strain stHIV-1sv (with a macaque-adapted HIV-1 env gene from simian-human immunodeficiency virus SHIV-KB9, a vif gene replaced by SIVmac239, and other genes originating from HIV-1NL4.3) and found that a single acidic amino acid substitution (G53D) in Vpu could increase its ability to degrade the tetherin of macaques (mTetherin) mainly through the proteasome pathway, resulting in an enhanced release and resistance to interferon inhibition of the mutant stHIV-1sv strain, with no influence on the other functions of Vpu. IMPORTANCE HIV-1 has obvious host specificity, which has greatly hindered the construction of animal models and severely restricted the development of HIV-1 vaccines and drugs. To overcome this barrier, we attempted to isolate the virus from NPMs infected with stHIV-1sv, search for a strain with an adaptive mutation in NPMs, and develop a more appropriate nonhuman primate model of HIV-1. This is the first report identifying HIV-1 adaptations in NPMs. It suggests that while tetherin may limit HIV-1 cross-species transmission, the Vpu protein in HIV-1 can overcome this species barrier through adaptive mutation, increasing viral replication in the new host. This finding will be beneficial to building an appropriate animal model for HIV-1 infection and promoting the development of HIV-1 vaccines and drugs.
Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , VIH-1 , Macaca , Proteínas Virales , Liberación del Virus , VIH-1/genética , VIH-1/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Mutación , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Liberación del Virus/genética , Sustitución de Aminoácidos/genética , Infecciones por VIH/virología , Modelos Animales de Enfermedad , Replicación Viral/genéticaRESUMEN
The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.
Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Factores de Empalme de ARNRESUMEN
We identified a novel circovirus (human-associated circovirus 2 [HuCV2]) from the blood of 2 intravenous drug users in China who were infected with HIV-1, hepatitis C virus, or both. HuCV2 is most closely related to porcine circovirus 3. Our findings underscore the risk for HuCV2 and other emerging viruses among this population.
Asunto(s)
Circovirus , Consumidores de Drogas , Abuso de Sustancias por Vía Intravenosa , Enfermedades de los Porcinos , Animales , Porcinos , Humanos , Circovirus/genética , Abuso de Sustancias por Vía Intravenosa/complicaciones , Abuso de Sustancias por Vía Intravenosa/epidemiología , China/epidemiología , Hepacivirus , Filogenia , Enfermedades de los Porcinos/epidemiologíaRESUMEN
In China, most SARS-CoV-2-infected individuals had been vaccinated with inactivated vaccines. However, little is known about their immune resistances to the previous variants of concerns (VOCs) and the current Omicron sublineages. Here, we collected convalescent serum samples from SARS-CoV-2-infected individuals during the ancestral, Delta, and Omicron BA.1 waves, and evaluated their cross-neutralizing antibodies (nAbs) against the previous VOCs and the current Omicron sublineages using VSV-based pseudoviruses. In the convalescents who had been unvaccinated and vaccinated with two doses of inactivated vaccines, we found infections from either the ancestral or the Delta strain elicited moderate cross-nAbs to previous VOCs, but very few cross-nAbs to the Omicron sublineages, including BA.1, BA.2, BA.3, and BA.4/5. The individuals who had been vaccinated with two doses of inactivated vaccines before Omicron BA.1 infection had moderate nAbs to Omicron BA.1, but weak cross-nAbs to the other Omicron sublineages. While three doses of inactivated vaccines followed Omicron BA.1 infection induced elevated and still weak cross-nAbs to other Omicron sublineages. Our results indicate that the Omicron sublineages show significant immune escape in the previously SARS-CoV-2-infected individuals and thus highlights the importance of vaccine boosters in this population.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas de Productos Inactivados , Sueroterapia para COVID-19 , Anticuerpos Neutralizantes , Anticuerpos AntiviralesRESUMEN
BACKGROUND: Gynecological cancer will become a more important public health problem in future years but limited evidence on gynecological cancer burden in China. METHODS: We extracted age-specific rate of cancer cases and deaths during 2007-2016 from the Chinese Cancer Registry Annual Report, and estimated age-specific population size using the data released by National Bureau of Statistics of China. Cancer burden were calculated by multiplying the rates with the population size. Temporal trends of the cancer cases, incidence, deaths, and mortality during 2007-2016 were calculated by JoinPoint Regression Program, and from 2017 to 2030 were projected by grey prediction model GM (1,1). RESULTS: In China, total gynecological cancer cases increased from 177,839 to 241,800, with the average annual percentage change of 3.5% (95% CI: 2.7-4.3%) during 2007-2016. Cervical, uterine, ovarian, vulva, and other gynecological cancer cases increased by 4.1% (95% CI: 3.3-4.9%), 3.3% (95% CI: 2.6-4.1%), 2.4% (95% CI: 1.4-3.5%), 4.4% (95% CI: 2.5-6.4%), and 3.6% (95% CI: 1.4-5.9%) respectively. From 2017 to 2030, projected gynecological cancer cases are changing from 246,581 to 408,314. Cervical, vulva and vaginal cancers showed evident upward trend, while uterine and ovarian cancer cases are slightly increasing. The increases for age-standardized incidence rates were similar with that of cancer cases. Temporal trends of cancer deaths and mortality were similar with that of cancer cases and incidence during 2007-2030, except that uterine cancer deaths and mortality were declined. CONCLUSIONS: With the aging of population and other increased risk factors, the burden of gynecological cancers in China is likely to be grew rapidly in the future, comprehensive gynecological cancer control should be concerned.
Asunto(s)
Carcinoma in Situ , Neoplasias Ováricas , Neoplasias Vaginales , Femenino , Humanos , China/epidemiología , EnvejecimientoRESUMEN
To improve the water solubility of anti-human immunodeficiency virus (HIV) agent DB02, an excellent non-nucleoside reverse-transcriptase inhibitor (NNRTI) obtained in our previous efforts, we designed and synthesized four phosphate derivatives of DB02 based on the molecular model of DB02 with RT. Here, the antiviral activity of these four derivatives was detected, leading to the discovery of compound P-2, which possessed a superior potency to the lead compound DB02 against wild-type HIV-1 and a variety of HIV-resistant mutant viruses significantly. Furthermore, the water solubility of P-2 was nearly 17 times higher than that of DB02, and the pharmacokinetic test in rats showed that P-2 demonstrate significantly improved oral bioavailablity of 14.6%. Our study showed that the introduction of a phosphate ester group at the end of the C-2 side chain of DB02 was beneficial to the improvement of its antiviral activity and pharmacokinetic properties, which provided a promising lead for the further development of S-DACOs type of NNRTIs.
Asunto(s)
VIH-1 , Fosfatos , Ratas , Animales , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacocinética , Modelos Moleculares , ARN Polimerasas Dirigidas por ADN , Relación Estructura-ActividadRESUMEN
The host range of human immunodeficiency virus type 1 (HIV-1) is narrow. Therefore, using ordinary animal models to study HIV-1 replication, pathogenesis, and therapy is impractical. The lack of applicable animal models for HIV-1 research spurred our investigation on whether tree shrews (Tupaia belangeri chinensis), which are susceptible to many types of human viruses, can act as an animal model for HIV-1. Here, we report that tree shrew primary cells are refractory to wild-type HIV-1 but support the early replication steps of HIV-1 pseudotyped with the vesicular stomatitis virus glycoprotein envelope (VSV-G), which can bypass entry receptors. The exogenous expression of human CD4 renders the tree shrew cell line infectible to X4-tropic HIV-1IIIB, suggesting that tree shrew CXCR4 is a functional HIV-1 coreceptor. However, tree shrew cells did not produce infectious HIV-1 progeny virions, even with the human CD4 receptor. Subsequently, we identified tree shrew (ts) apolipoprotein B editing catalytic polypeptide 3 (tsAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity, with virus infectivity reduced 10- to 1,000-fold. Unlike human APOBEC3G, the tsA3Z2c-Z1b protein was not degraded by the HIV-1 viral infectivity factor (Vif) but markedly restricted HIV-1 replication through mutagenicity and reverse transcription inhibition. The pooled knockout of tsA3Z2c-Z1b partially restored the infectivity of the HIV-1 progeny. This work suggests that tsAPOBEC3 proteins serve as an additional barrier to the development of HIV-1 tree shrew models, even when virus entry is overcome by exogenous expression of human CD4. IMPORTANCE The development of animal models is critical for studying human diseases and their pathogenesis and for evaluating drug and vaccine efficacy. For improved AIDS research, the ideal animal model of HIV-1 infection should be a small laboratory mammal that closely mimics virus replication in humans. Tree shrews exhibit considerable potential as animal models for the study of human diseases and therapeutic responses. Here, we report that human CD4-expressing tree shrew cells support the early steps of HIV-1 replication and that tree shrew CXCR4 is a functional coreceptor of HIV-1. However, tree shrew cells harbor additional restrictions that lead to the production of HIV-1 virions with low infectivity. Thus, the tsAPOBEC3 proteins are partial barriers to developing tree shrews as an HIV-1 model. Our results provide insight into the genetic basis of HIV inhibition in tree shrews and build a foundation for the establishment of gene-edited tree shrew HIV-1-infected models.
Asunto(s)
Desaminasas APOBEC/metabolismo , Antígenos CD4/metabolismo , VIH-1/fisiología , Receptores CCR5/metabolismo , Tupaia/virología , Replicación Viral , Desaminasas APOBEC/genética , Animales , Células Cultivadas , VIH-1/genética , Humanos , Glicoproteínas de Membrana/genética , Modelos Animales , Receptores CXCR4/metabolismo , Proteínas Recombinantes/genética , Proteínas del Envoltorio Viral/genética , Integración ViralRESUMEN
Human immunodeficiency virus (HIV) infection is fast becoming widespread in the world with 37.7 million people living with HIV in 2020. Antiretroviral therapy involving chemical drugs has declined acquired immunodeficiency syndrome (AIDS)-related mortality and improved the life quality of AIDS/HIV sufferers. However, the emergence of drug resistance and side effects are the main obstacles for the long-term use of these chemicals as antiretroviral therapy. Recently, a lot of emphasis is being put on finding naturally occurring drug candidates that show activity against HIV and can be potentially used as antiretroviral therapy. In this study, different medicinal plants, Pistacia khinjuk, Teucrium stocksianum, Uncaria tomentosa, Pistacia integerrima, Trigonella gharuensis, and Artocarpus lakoocha, were explored for their anti-HIV potential. Syncytium and p24 assays were performed to determine antiviral activity, while the MTT assay was used to determine cytotoxicity. Results showed that extracts from all six plants inhibited HIV replication in vitro. Also, extracts from Pistacia khinjuk, Teucrium stocksianum, Uncaria tomentosa, and Pistacia integerrima showed low cytotoxicity with a 50% cytotoxicity concentration value of >200 µM. Results of this study indicate that there is potential in these natural extracts to become candidate drugs to be used as complementary and alternative medicine for HIV infection.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , VIH-1 , Plantas Medicinales , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
Hepatitis C virus (HCV) infection is the cause of severe liver disease in many people. The restricted species tropism of HCV hinders the research and development of drugs and vaccines. The Chinese tree shrew (Tupaia belangeri chinensis) is a close relative of primates and can be infected by HCV, but the underlying mechanisms are unknown. In this study, we have characterized the functions of tree shrew MAVS (tMAVS) in response to HCV infection and defined the capacity of HCV replication. HCV was shown to be colocalized with tMAVS in primary tree shrew hepatocytes and cleaved tMAVS at site Cys508 via its NS3/4A protease, with a modulating effect by site Glu506 of tMAVS. The tMAVS cleavage by HCV NS3/4A impaired the IRF3-mediated induction of IFN-ß but maintained the activated NF-κB signaling in the tree shrew primary cells. Activation of the tMAVS-dependent NF-κB signaling inversely inhibited HCV replication and might limit the establishment of persistent infection. Overall, our study has revealed an elegant example of the balance between the host defenses and HCV infection via the MAVS-mediated antiviral signaling and has provided an insight into the mechanisms underpinning HCV infection in the Chinese tree shrew.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Hepacivirus/fisiología , Hepatitis C/inmunología , Evasión Inmune , Inmunidad Innata , FN-kappa B/inmunología , Tupaia/inmunología , Replicación Viral/inmunología , Animales , Hepatitis C/veterinariaRESUMEN
Dengue virus, belonging to a genus Flavivirus, caused public health problem in recent years. One controversial vaccine of DENV was approved and there is no antiviral for the clinic treatment of DENV, therefore, efficient antivirals to DENV are of great medical significance. In this study, we conducted the design, synthesis, cell-based and target-based activity evaluation of 28 compounds based on indoline structural skeleton against DENV infection. Among them, 13 active compounds against DENV infection were discovered and their structure-activity relationship (SAR) was summarized. In this study, indoline carbohydrazine has derived more active compounds than indoline carboamide. It is discovered that TBS group exhibits a good pharmacophore to enhance anti-DENV activity. Further exploration indicated that post-treatment acts as effective time of addition and compound 15 targeting the post-entry stages of DENV2 viral life cycle. SPR imaging results support there are strong interaction of 13 and 15 with RdRp and compounds 13 and 15 reduce RdRp enzymatic activity, revealing that RdRp of DENV NS5 is the drug target for these series of compounds. Molecular docking deciphered the relationship of the structural feature with the putative binding mode by 13 and 15 with RdRp domain of DENV2 NS5 by hydrogen bonds and hydrophobic interactions to establish the fitted low energy conformation. Future studies will focus on designing more potent inhibitors for the treatment and prevention of dengue virus replication and infection, and understanding the more profound underlying structural features of inhibitors and drug action of the mechanism.
Asunto(s)
Virus del Dengue , Antivirales/química , Indoles , Simulación del Acoplamiento Molecular , ARN Polimerasa Dependiente del ARN , Relación Estructura-ActividadRESUMEN
Both HIV and DENV are serious threats to human life, health and social economy today. So far, no vaccine for either HIV or DENV has been developed successfully. The research on anti-HIV or DENV drugs is still of great significance. In this study we developed a series of novel 2-Aryl-1H-pyrazole-S-DABOs with C6-strucutral optimizations as potent NNRTIs, among which, 8 compounds had low cytotoxicity and EC50 values in the range of 0.0508 â¼ 0.0966 µM, and their selectivity index was SI > 1415 â¼ 3940. In particular, two compounds 4a and 4b were identified to have good inhibitory effects on DENV of four serotypes. The EC50 of compound 4a and 4b against DENV-II (13.2 µM and 9.23 µM, respectively) were better than that of the positive control ribavirin (EC50 = 40.78 µM). In addition, the effect of C-6 substituents on the anti-HIV or anti-DENV activity of these compounds was also discussed.
Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , VIH-1/efectos de los fármacos , Pirazoles/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-ActividadRESUMEN
Natural products possessing unique scaffolds may have antiviral activity but their complex structures hinder facile synthesis. A pharmacophore-oriented semisynthesis approach was applied to (-)-maoelactoneâ A (1) and oridonin (2) for the discovery of anti-SARS-CoV-2 agents. The Wolff rearrangement/lactonization cascade (WRLC) reaction was developed to construct the unprecedented maoelactone-type scaffold during semisynthesis of 1. Further mechanistic study suggested a concerted mechanism for Wolff rearrangement and a water-assisted stepwise process for lactonization. The WRLC reaction then enabled the creation of a novel family by assembly of the maoelactone-type scaffold and the pharmacophore of 2, whereby one derivative inhibited SARS-CoV-2 replication in HPA EpiC cells with a low EC50 value (19±1â nM) and a high TI value (>1000), both values better than those of remdesivir.
Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Antivirales/química , Antivirales/farmacología , Productos Biológicos/farmacología , Humanos , SARS-CoV-2RESUMEN
APOBEC3 family members, particularly APOBEC3F and APOBEC3G, inhibit the replication and spread of various retroviruses by inducing hypermutation in newly synthesized viral DNA. Viral hypermutation by APOBEC3 is associated with viral evolution, viral transmission, and disease progression. In recent years, increasing attention has been paid to targeting APOBEC3G for AIDS therapy. Thus, a controllable model system using species such as macaques, which provide a relatively ideal in vivo system, is needed for the study of APOBEC3-related issues. To appropriately utilize this animal model for biomedical research, important differences between human and macaque APOBEC3s must be considered. In this study, we found that the ratio of APOBEC3G-mediated/APOBEC3-mediated HIV-1 hypermutation footprints was much lower in peripheral blood mononuclear cells (PBMCs) from northern pig-tailed macaques than in PBMCs from humans. Next, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and resulted from an Alu element insertion into macaque APOBEC3G gene intron 1. This alternative splicing pattern generating an aberrant APOBEC3G mRNA isoform may significantly dilute full-length APOBEC3G and reduce APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques, which was supported by the elimination of other possibilities accounting for this hypermutation difference between the two hosts.IMPORTANCE APOBEC3 family members, particularly APOBEC3F and APOBEC3G, are important cellular antiviral factors. Recently, more attention has been paid to targeting APOBEC3G for AIDS therapy. To appropriately utilize macaque animal models for the study of APOBEC3-related issues, it is important that the differences between human and macaque APOBEC3s are clarified. In this study, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and which may reduce the APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques (NPMs). Our work provides important information for the proper application of macaque animal models for APOBEC3-related issues in AIDS research and a better understanding of the biological functions of APOBEC3 proteins.
Asunto(s)
Desaminasa APOBEC-3G/genética , Elementos Alu/genética , VIH-1/genética , Desaminasa APOBEC-3G/metabolismo , Empalme Alternativo/genética , Animales , Citidina Desaminasa/metabolismo , ADN Viral/genética , Modelos Animales de Enfermedad , Infecciones por VIH/virología , Seropositividad para VIH/genética , VIH-1/patogenicidad , Humanos , Intrones/genética , Leucocitos Mononucleares/virología , Macaca/genética , Macaca fascicularis , Macaca mulatta , Mutación/genética , Precursores del ARN/metabolismo , Replicación Viral/genéticaRESUMEN
Nucleos(t)ide analogues (NAs) have been widely used for the treatment of chronic hepatitis B (CHB). Because viral DNA polymerase lacks proofreading function (3' exonuclease activity), theoretically, the incorporated NAs would irreversibly terminate viral DNA synthesis. This study explored the natures of nascent hepatitis B virus (HBV) DNA and infectivity of progeny virions produced under NA treatment. HBV infectivity was determined by infection of HepG2-NTCP cells and primary human hepatocytes (PHHs). Biochemical properties of HBV DNA in the progeny virions were investigated by qPCR, northern blotting, or Southern blotting hybridization, sucrose gradient centrifugation, and in vitro endogenous DNA polymerase assay. Progeny HBV virions produced under NA treatment were mainly not infectious to HepG2-NTCP cells or PHHs. Biochemical analysis revealed that under NA treatment, HBV DNA in nucleaocapsids or virions were predominantly short minus-strand DNA with irreversible termination. This finding was supported by the observation of first disappearance of relaxed circular DNA and then the proportional decline of HBV-DNA levels corresponding to the regions of PreC/C, S, and X genes in serial sera of patients receiving NA treatment. Conclusion: HBV virions produced under NA treatment are predominantly replication deficient because the viral genomes are truncated and elongation of DNA chains is irreversibly terminated. Clinically, our results suggest that the viral loads of CHB patients under NA therapy vary with the different regions of genome being detected by qPCR assays. Our findings also imply that NA prevention of perinatal and sexual HBV transmission as well as infection of transplanted livers works not only by reducing viral loads, but also by producing noninfectious virions.
Asunto(s)
ADN Viral/fisiología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Hepatitis B Crónica/virología , Nucleósidos/uso terapéutico , Virión/genética , Virión/patogenicidad , Virus de la Hepatitis B/ultraestructura , Hepatitis B Crónica/tratamiento farmacológico , HumanosRESUMEN
OKT4 is an important epitope of the CD4 molecular. Amino acid mutations in the CD4V3 region result in deficiency of the OKT4 epitope in human. Here, we firstly reported a case of hereditary deficiency of OKT4 epitope in an inbred Chinese rhesus macaque family. This epitope deficiency is due to cytosine to thymine transition and homozygote at the nucleotide position 793 of CD4 coding sequences, which leads to the replace of arginine at 265th position of CD4 molecule by tryptophan. The results reveal that OKT4 epitope deficiency is a very old phenotype and may be parentally inherited, and emphasize the importance of avoiding inbreeding in primate population breeding.
Asunto(s)
Antígenos CD4 , Animales , Epítopos , Macaca mulatta/genéticaRESUMEN
BACKGROUND: As the transmission routes of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are similar, previous studies based on separate research on HIV-1 and HCV assumed a similar transmission pattern. However, few studies have focused on the possible correlation of the spatial dynamics of HIV-1 and HCV among HIV-1/HCV coinfected patients. METHODS: A total of 310 HIV-1/HCV coinfected drug users were recruited in Yingjiang and Kaiyuan prefectures, Yunnan Province, China. HIV-1 env, p17, pol and HCV C/E2, NS5B fragments were amplified and sequenced from serum samples. The genetic characteristics and spatial dynamics of HIV-1 and HCV were explored by phylogenetic, bootscanning, and phylogeographic analyses. RESULTS: Among HIV-1/HCV coinfected drug users, eight HCV subtypes (1a, 1b, 3a, 3b, 6a, 6n, 6v, and 6u) and two HIV-1 subtypes (subtype B and subtype C), three HIV-1 circulating recombinant forms (CRF01_AE, CRF07_BC and CRF08_BC), and four unique recombinant forms (URF_BC, URF_01B, URF_01C and URF_01BC) were identified. HCV subtype 3b was the most predominant subtype in both Yingjiang and Kaiyuan prefectures. The dominant circulating HIV-1 subtypes for drug users among the two areas were CRF08_BC and URF_BC. Maximum clade credibility trees revealed that both HIV-1 and HCV were transmitted from Yingjiang to Kaiyuan. CONCLUSIONS: The spatial dynamics of HIV-1 and HCV among HIV-1/HCV coinfected drug users seem to have high consistency, providing theoretical evidence for the prevention of HIV-1 and HCV simultaneously.
Asunto(s)
Coinfección , Consumidores de Drogas , Infecciones por VIH , VIH-1 , Hepatitis C , China/epidemiología , Coinfección/epidemiología , Genotipo , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , VIH-1/genética , Hepacivirus/genética , Hepatitis C/complicaciones , Hepatitis C/epidemiología , Humanos , FilogeniaRESUMEN
Eucalyptus is a large genus of the Myrtaceae family with high value in various fields of industry. Recently, attention has been focused on the functional properties of Eucalyptus extracts. These extracts have been traditionally used to combat various infectious diseases, and volatile oils are usually considered to play a major role. But the positive effects of non-volatile acylphloroglucinols, a class of specialized metabolites with relatively high content in Eucalyptus, should not be neglected. Herein, non-volatile acylphloroglucinols from leaves of Eucalyptus robusta were evaluated for their abilities to inhibit Zika virus (ZIKV) which is associated with severe neurological damage and complications. The results showed eucalyprobusone G, a new symmetrical acylphloroglucinol dimer, possessed the significant ability to inhibit ZIKV without inducing cytotoxicity. The EC50 values of eucalyprobusone G against the African lineage (MR766) and Asian lineage (SZ-WIV01) of ZIKV were 0.43 ± 0.08 and 10.10 ± 3.84 µM which were 110 times and 5.8 times better than those of the reference compound ribavirin, respectively. Further action mode research showed that eucalyprobusone G impairs the viral binding and RdRp activity of NS5. The results broaden the functional properties of Eucalyptus robusta and indicate acylphloroglucinol dimers could be developed as anti-ZIKV agents.
Asunto(s)
Antivirales/farmacología , Eucalyptus/química , Floroglucinol/farmacología , Virus Zika/efectos de los fármacos , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Línea Celular , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Floroglucinol/química , Floroglucinol/aislamiento & purificación , Hojas de la Planta/química , Relación Estructura-ActividadRESUMEN
Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.
Asunto(s)
Agaricales/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Inactivadoras de Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Endorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Células HeLa , Células Hep G2 , Humanos , Unión Proteica/fisiología , ARN Ribosómico 28S/metabolismo , Ratas , Ricina/metabolismoRESUMEN
Long noncoding RNAs (lncRNAs) mediate important epigenetic regulation in a wide range of biological processes and diseases. We applied comprehensive analyses of RNA-seq and CAGE-seq (cap analysis of gene expression and sequencing) to characterize the dynamic changes in lncRNA expression in rhesus macaque (Macaca mulatta) brain in four representative age groups. We identified 18 anatomically diverse lncRNA modules and 14 mRNA modules representing spatial, age, and sex specificities. Spatiotemporal- and sex-biased changes in lncRNA expression were generally higher than those observed in mRNA expression. A negative correlation between lncRNA and mRNA expression in cerebral cortex was observed and functionally validated. Our findings offer a fresh insight into spatial-, age-, and sex-biased changes in lncRNA expression in macaque brain and suggest that the changes represent a previously unappreciated regulatory system that potentially contributes to brain development and aging.