Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(17): 9337-9355, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37427791

RESUMEN

Two prominent cytoplasmic RNA granules, ubiquitous RNA-processing bodies (PB) and inducible stress granules (SG), regulate mRNA translation and are intimately related. In this study, we found that arsenite (ARS)-induced SG formed in a stepwise process is topologically and mechanically linked to PB. Two essential PB components, GW182 and DDX6, are repurposed under stress to play direct but distinguishable roles in SG biogenesis. By providing scaffolding activities, GW182 promotes the aggregation of SG components to form SG bodies. DEAD-box helicase DDX6 is also essential for the proper assembly and separation of PB from SG. DDX6 deficiency results in the formation of irregularly shaped 'hybrid' PB/SG granules with accumulated components of both PB and SG. Wild-type DDX6, but not its helicase mutant E247A, can rescue the separation of PB from SG in DDX6KO cells, indicating a requirement of DDX6 helicase activity for this process. DDX6 activity in biogenesis of both PB and SG in the cells under stress is further modulated by its interaction with two protein partners, CNOT1 and 4E-T, of which knockdown affects the formation of both PB and also SG. Together, these data highlight a new functional paradigm between PB and SG biogenesis during the stress.


Asunto(s)
Cuerpos de Procesamiento , Gránulos de Estrés , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Humanos , Línea Celular
2.
Neuroimage ; 296: 120657, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810892

RESUMEN

The complexity of fMRI signals quantifies temporal dynamics of spontaneous neural activity, which has been increasingly recognized as providing important insights into cognitive functions and psychiatric disorders. However, its heritability and structural underpinnings are not well understood. Here, we utilize multi-scale sample entropy to extract resting-state fMRI complexity in a large healthy adult sample from the Human Connectome Project. We show that fMRI complexity at multiple time scales is heritable in broad brain regions. Heritability estimates are modest and regionally variable. We relate fMRI complexity to brain structure including surface area, cortical myelination, cortical thickness, subcortical volumes, and total brain volume. We find that surface area is negatively correlated with fine-scale complexity and positively correlated with coarse-scale complexity in most cortical regions, especially the association cortex. Most of these correlations are related to common genetic and environmental effects. We also find positive correlations between cortical myelination and fMRI complexity at fine scales and negative correlations at coarse scales in the prefrontal cortex, lateral temporal lobe, precuneus, lateral parietal cortex, and cingulate cortex, with these correlations mainly attributed to common environmental effects. We detect few significant associations between fMRI complexity and cortical thickness. Despite the non-significant association with total brain volume, fMRI complexity exhibits significant correlations with subcortical volumes in the hippocampus, cerebellum, putamen, and pallidum at certain scales. Collectively, our work establishes the genetic basis and structural correlates of resting-state fMRI complexity across multiple scales, supporting its potential application as an endophenotype for psychiatric disorders.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Conectoma/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Adulto Joven , Descanso/fisiología
3.
PLoS Pathog ; 18(7): e1010311, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35834586

RESUMEN

RNA splicing plays an essential role in the expression of eukaryotic genes. We previously showed that KSHV ORF57 is a viral splicing factor promoting viral lytic gene expression. In this report, we compared the splicing profile of viral RNAs in BCBL-1 cells carrying a wild-type (WT) versus the cells containing an ORF57 knock-out (57KO) KSHV genome during viral lytic infection. Our analyses of viral RNA splice junctions from RNA-seq identified 269 RNA splicing events in the WT and 255 in the 57KO genome, including the splicing events spanning large parts of the viral genome and the production of vIRF4 circRNAs. No circRNA was detectable from the PAN region. We found that the 57KO alters the RNA splicing efficiency of targeted viral RNAs. Two most susceptible RNAs to ORF57 splicing regulation are the K15 RNA with eight exons and seven introns and the bicistronic RNA encoding both viral thymidylate synthase (ORF70) and membrane-associated E3-ubiquitin ligase (K3). ORF57 inhibits splicing of both K15 introns 1 and 2. ORF70/K3 RNA bears two introns, of which the first intron is within the ORF70 coding region as an alternative intron and the second intron in the intergenic region between the ORF70 and K3 as a constitutive intron. In the WT cells expressing ORF57, most ORF70/K3 transcripts retain the first intron to maintain an intact ORF70 coding region. In contrast, in the 57KO cells, the first intron is substantially spliced out. Using a minigene comprising of ORF70/K3 locus, we further confirmed ORF57 regulation of ORF70/K3 RNA splicing, independently of other viral factors. By monitoring protein expression, we showed that ORF57-mediated retention of the first intron leads to the expression of full-length ORF70 protein. The absence of ORF57 promotes the first intron splicing and expression of K3 protein. Altogether, we conclude that ORF57 regulates alternative splicing of ORF70/K3 bicistronic RNA to control K3-mediated immune evasion and ORF70 participation of viral DNA replication in viral lytic infection.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Represoras/genética , Transactivadores/genética , Replicación del ADN , ADN Viral/metabolismo , Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 8/fisiología , Empalme del ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/genética
4.
PLoS Comput Biol ; 19(6): e1011269, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379330

RESUMEN

Environmental changes play a critical role in determining the evolution of social dilemmas in many natural or social systems. Generally, the environmental changes include two prominent aspects: the global time-dependent fluctuations and the local strategy-dependent feedbacks. However, the impacts of these two types of environmental changes have only been studied separately, a complete picture of the environmental effects exerted by the combination of these two aspects remains unclear. Here we develop a theoretical framework that integrates group strategic behaviors with their general dynamic environments, where the global environmental fluctuations are associated with a nonlinear factor in public goods game and the local environmental feedbacks are described by the 'eco-evolutionary game'. We show how the coupled dynamics of local game-environment evolution differ in static and dynamic global environments. In particular, we find the emergence of cyclic evolution of group cooperation and local environment, which forms an interior irregular loop in the phase plane, depending on the relative changing speed of both global and local environments compared to the strategic change. Further, we observe that this cyclic evolution disappears and transforms into an interior stable equilibrium when the global environment is frequency-dependent. Our results provide important insights into how diverse evolutionary outcomes could emerge from the nonlinear interactions between strategies and the changing environments.


Asunto(s)
Evolución Biológica , Clima , Retroalimentación , Procesos de Grupo , Teoría del Juego , Conducta Cooperativa
5.
PLoS Comput Biol ; 19(5): e1010866, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167331

RESUMEN

Stimulation to local areas remarkably affects brain activity patterns, which can be exploited to investigate neural bases of cognitive function and modify pathological brain statuses. There has been growing interest in exploring the fundamental action mechanisms of local stimulation. Nevertheless, how noise amplitude, an essential element in neural dynamics, influences stimulation-induced brain states remains unknown. Here, we systematically examine the effects of local stimulation by using a large-scale biophysical model under different combinations of noise amplitudes and stimulation sites. We demonstrate that noise amplitude nonlinearly and heterogeneously tunes the stimulation effects from both regional and network perspectives. Furthermore, by incorporating the role of the anatomical network, we show that the peak frequencies of unstimulated areas at different stimulation sites averaged across noise amplitudes are highly positively related to structural connectivity. Crucially, the association between the overall changes in functional connectivity as well as the alterations in the constraints imposed by structural connectivity with the structural degree of stimulation sites is nonmonotonically influenced by the noise amplitude, with the association increasing in specific noise amplitude ranges. Moreover, the impacts of local stimulation of cognitive systems depend on the complex interplay between the noise amplitude and average structural degree. Overall, this work provides theoretical insights into how noise amplitude and network structure jointly modulate brain dynamics during stimulation and introduces possibilities for better predicting and controlling stimulation outcomes.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/fisiología , Cognición
6.
Appl Microbiol Biotechnol ; 108(1): 75, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194140

RESUMEN

Menaquinone-7 (MK-7), a subtype of vitamin K2 (VK2), assumes crucial roles in coagulation function, calcium homeostasis, and respiratory chain transmission. The production of MK-7 via microbial fermentation boasts mild technological conditions and high biocompatibility. Nevertheless, the redox activity of MK-7 imposes constraints on its excessive accumulation in microorganisms. To address this predicament, an adaptive laboratory evolution (ALE) protocol was implemented in Bacillus subtilis BS011, utilizing vitamin K3 (VK3) as a structural analog of MK-7. The resulting strain, BS012, exhibited heightened tolerance to high VK3 concentrations and demonstrated substantial enhancements in biofilm formation and total antioxidant capacity (T-AOC) when compared to BS011. Furthermore, MK-7 production in BS012 exceeded that of BS011 by 76% and 22% under static and shaking cultivation conditions, respectively. The molecular basis underlying the superior performance of BS012 was elucidated through genome and transcriptome analyses, encompassing observations of alterations in cell morphology, variations in central carbon and nitrogen metabolism, spore formation, and antioxidant systems. In summation, ALE technology can notably enhance the tolerance of B. subtilis to VK and increase MK-7 production, thus offering a theoretical framework for the microbial fermentation production of other VK2 subtypes. Additionally, the evolved strain BS012 can be developed for integration into probiotic formulations within the food industry to maintain intestinal flora homeostasis, mitigate osteoporosis risk, and reduce the incidence of cardiovascular disease. KEY POINTS: • Bacillus subtilis was evolved for improved vitamin K tolerance and menaquinone-7 (MK-7) production • Evolved strains formed wrinkled biofilms and elongated almost twofold in length • Evolved strains induced sporulation to improve tolerance when carbon was limited.


Asunto(s)
Bacillus subtilis , Vitamina K , Bacillus subtilis/genética , Antioxidantes , Vitamina K 2 , Carbono
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33436409

RESUMEN

Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Papillomavirus Humano 16/genética , MicroARNs/genética , Infecciones por Papillomavirus/genética , ARN Largo no Codificante/genética , Neoplasias del Cuello Uterino/genética , Factor de Transcripción YY1/genética , Empalme Alternativo , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Cuello del Útero/metabolismo , Cuello del Útero/patología , Cuello del Útero/virología , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/patogenicidad , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/virología , MicroARNs/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Factor de Transcripción YY1/metabolismo
8.
Chaos ; 34(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407398

RESUMEN

Network modeling characterizes the underlying principles of structural properties and is of vital significance for simulating dynamical processes in real world. However, bridging structure and dynamics is always challenging due to the multiple complexities in real systems. Here, through introducing the individual's activity rate and the possibility of group interaction, we propose a probabilistic activity-driven (PAD) model that could generate temporal higher-order networks with both power-law and high-clustering characteristics, which successfully links the two most critical structural features and a basic dynamical pattern in extensive complex systems. Surprisingly, the power-law exponents and the clustering coefficients of the aggregated PAD network could be tuned in a wide range by altering a set of model parameters. We further provide an approximation algorithm to select the proper parameters that can generate networks with given structural properties, the effectiveness of which is verified by fitting various real-world networks. Finally, we construct the co-evolution framework of the PAD model and higher-order contagion dynamics and derive the critical conditions for phase transition and bistable phenomenon using theoretical and numerical methods. Results show that tendency of participating in higher-order interactions can promote the emergence of bistability but delay the outbreak under heterogeneous activity rates. Our model provides a basic tool to reproduce complex structural properties and to study the widespread higher-order dynamics, which has great potential for applications across fields.

9.
J Virol ; 96(3): e0178221, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787459

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 is an RNA-binding posttranscriptional regulator. We recently applied an affinity-purified anti-ORF57 antibody to conduct ORF57 cross-linking immunoprecipitation (CLIP) in combination with RNA-sequencing (CLIP-seq) and analyzed the genome-wide host RNA transcripts in association with ORF57 in BCBL-1 cells with lytic KSHV infection. Mapping of the CLIP RNA reads to the human genome (GRCh37) revealed that most of the ORF57-associated RNA reads were from rRNAs. The remaining RNA reads mapped to several classes of host noncoding and protein-coding mRNAs. We found that ORF57 binds and regulates expression of a subset of host long noncoding RNAs (lncRNAs), including LINC00324, LINC00355, and LINC00839, which are involved in cell growth. ORF57 binds small nucleolar RNAs (snoRNAs) responsible for 18S and 28S rRNA modifications but does not interact with fibrillarin or NOP58. We validated ORF57 interactions with 67 snoRNAs by ORF57 RNA immunoprecipitation (RIP)-snoRNA array assays. Most of the identified ORF57 rRNA binding sites (BS) overlap the sites binding snoRNAs. We confirmed ORF57-snoRA71B RNA interaction in BCBL-1 cells by ORF57 RIP and Northern blot analyses using a 32P-labeled oligonucleotide probe from the 18S rRNA region complementary to snoRA71B. Using RNA oligonucleotides from the rRNA regions that ORF57 binds for oligonucleotide pulldown-Western blot assays, we selectively verified ORF57 interactions with 5.8S and 18S rRNAs. Polysome profiling revealed that ORF57 associates with both monosomes and polysomes and that its association with polysomes increases PABPC1 binding to polysomes but prevents Ago2 association with polysomes. Our data indicate a functional correlation with ORF57 binding and suppression of Ago2 activities for ORF57 promotion of gene expression. IMPORTANCE As an RNA-binding protein, KSHV ORF57 regulates RNA splicing, stability, and translation and inhibits host innate immunity by blocking the formation of RNA granules in virus-infected cells. In this study, ORF57 was found to interact with many host noncoding RNAs, including lncRNAs, snoRNAs, and rRNAs, to carry out additional unknown functions. ORF57 binds a group of lncRNAs via the RNA motifs identified by ORF57 CLIP-seq to regulate their expression. ORF57 associates with snoRNAs independently of fibrillarin and NOP58 proteins and with rRNA in the regions that commonly bind snoRNAs. Knockdown of fibrillarin expression decreases the expression of snoRNAs and CDK4 but does not affect viral gene expression. More importantly, we found that ORF57 binds translationally active polysomes and enhances PABPC1 but prevents Ago2 association with polysomes. Data provide compelling evidence on how ORF57 in KSHV-infected cells might regulate protein synthesis by blocking Ago2's hostile activities on translation.


Asunto(s)
Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno/genética , Polirribosomas/metabolismo , ARN no Traducido/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Regulación de la Expresión Génica , Regulación Viral de la Expresión Génica , Estudio de Asociación del Genoma Completo , Infecciones por Herpesviridae/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Replicación Viral
10.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33313791

RESUMEN

Structures of genetic regulatory networks are not fixed. These structural perturbations can cause changes to the reachability of systems' state spaces. As system structures are related to genotypes and state spaces are related to phenotypes, it is important to study the relationship between structures and state spaces. However, there is still no method can quantitively describe the reachability differences of two state spaces caused by structural perturbations. Therefore, Difference in Reachability between State Spaces (DReSS) is proposed. DReSS index family can quantitively describe differences of reachability, attractor sets between two state spaces and can help find the key structure in a system, which may influence system's state space significantly. First, basic properties of DReSS including non-negativity, symmetry and subadditivity are proved. Then, typical examples are shown to explain the meaning of DReSS and the differences between DReSS and traditional graph distance. Finally, differences of DReSS distribution between real biological regulatory networks and random networks are compared. Results show most structural perturbations in biological networks tend to affect reachability inside and between attractor basins rather than to affect attractor set itself when compared with random networks, which illustrates that most genotype differences tend to influence the proportion of different phenotypes and only a few ones can create new phenotypes. DReSS can provide researchers with a new insight to study the relation between genotypes and phenotypes.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Genotipo , Modelos Genéticos
11.
PLoS Pathog ; 17(8): e1009812, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343212

RESUMEN

MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , ADN Viral/genética , Queratinocitos/metabolismo , Papiloma/genética , Papillomaviridae/genética , Infecciones por Papillomavirus/genética , Animales , Animales Recién Nacidos , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Femenino , Genoma Viral , Recombinación Homóloga , Queratinocitos/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Papiloma/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , RNA-Seq
12.
J Med Virol ; 95(5): e28761, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212316

RESUMEN

Persistent high-risk human papillomavirus (HR-HPV) infections cause cervical cancer and a fraction of head and neck cancer. To investigate whether HR-HPV infection might be also involved in the development of gastric cancer (GC), we developed a platform utilizing a rolling circle amplification (RCA)-based nested L1 polymerase chain reaction with Sanger sequencing to genotype the HPV DNA in cancer tissues of 361 GC and 89 oropharyngeal squamous cell carcinomas (OPSCC). HPV transcriptional activity was determined by E6/E7 mRNA expression and a 3' rapid amplification of cDNA ends was performed to identify HPV integration and expression of virus-host fusion transcripts. Ten of 361 GC, 2 of 89 OPSCC, and 1 of 22 normal adjacent tissues were HPV L1 DNA-positive. Five of the 10 HPV-positive GC were genotyped as HPV16 by sequencing and 1 of 2 GC with RCA/nested HPV16 E6/E7 DNA detection exhibited HPV16 E6/E7 mRNA. Two OPSCC displayed HPV16 L1 DNA and E6/E7 mRNA, of which 1 OPSCC tissue showed virus-host RNA fusion transcripts from an intron region of KIAA0825 gene. Together, our data reveal viral oncogene expression and/or integration in GC and OPSCC and a possible etiology role of HPV infections in gastric carcinogenesis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias Gástricas , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Virus del Papiloma Humano , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias Gástricas/genética , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , ARN Viral/genética , ARN Viral/análisis , Oncogenes , ARN Mensajero/genética , ADN Viral/genética , ADN Viral/análisis
13.
Curr Microbiol ; 80(5): 183, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055590

RESUMEN

Vitamin K2 plays an important role in electron transport, blood coagulation, and calcium homeostasis, and researchers have been trying to use microbes to produce it. Although our previous studies have shown that gradient radiation, breeding, and culture acclimation can improve vitamin K2 production in Elizabethkingia meningoseptica, the mechanism is still unclear. This study is the first which performs genome sequencing of E. meningoseptica sp. F2 as a basis for subsequent experiments and further comparative analyses with other strains. Comparative metabolic pathway analysis of E. meningoseptica sp. F2, E. coli, Bacillus subtilis, and other vitamin K2 product strains revealed that the mevalonate pathway of E. meningoseptica sp. F2 is different in bacteria at the system level. The expressions of menA, menD, menH, and menI in the menaquinone pathway and idi, hmgR, and ggpps in the mevalonate pathway were higher than those in the original strain. A total of 67 differentially expressed proteins involved in the oxidative phosphorylation metabolic pathway and citric acid cycle (TCA cycle) were identified. Our results reveal that combined gradient radiation breeding and culture acclimation can promote vitamin K2 accumulation probably by regulating the vitamin K2 pathway, oxidative phosphorylation metabolism pathway, and the citrate cycle (TCA cycle).


Asunto(s)
Infecciones por Flavobacteriaceae , Flavobacteriaceae , Humanos , Infecciones por Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/microbiología , Escherichia coli , Ácido Mevalónico , Flavobacteriaceae/genética , Mutagénesis , Vitamina K
14.
Mycorrhiza ; 33(5-6): 333-344, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572110

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts of most land plants. In these organisms, thousands of nuclei that are either genetically similar (homokaryotic) or derived from two distinct parents (dikaryotic) co-exist in a large syncytium. Here, we investigated the impact of these two nuclear organizations on the mycorrhizal response of potatoes (Solanum tuberosum) by inoculating four potato cultivars with eight Rhizophagus irregularis strains individually (four homokaryotic and four dikaryotic). By evaluating plant and fungal fitness-related traits four months post inoculation, we found that AMF genetic organization significantly affects the mycorrhizal response of host plants. Specifically, homokaryotic strains lead to higher total, shoot, and tuber biomass and a higher number of tubers, compared to dikaryotic strains. However, fungal fitness-related traits showed no clear differences between homokaryotic and dikaryotic strains. Nucleotype content analysis of single spores confirmed that the nucleotype ratio of AMF heterokaryon spores can shift depending on host identity. Together, these findings continue to highlight significant ecological differences derived from the two distinct genetic organizations in AMF.


Asunto(s)
Micorrizas , Solanum tuberosum , Micorrizas/genética , Fenotipo , Plantas/microbiología , Biomasa , Hongos
15.
PLoS Pathog ; 16(1): e1008206, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31968015

RESUMEN

High-risk human papillomaviruses (HPVs) cause 5% of human cancers. Despite the availability of HPV vaccines, there remains a strong urgency to find ways to treat persistent HPV infections, as current HPV vaccines are not therapeutic for individuals already infected. We used a mouse papillomavirus infection model to characterize virus-host interactions. We found that mouse papillomavirus (MmuPV1) suppresses host immune responses via overexpression of stress keratins. In mice deficient for stress keratin K17 (K17KO), we observed rapid regression of papillomas dependent on T cells. Cellular genes involved in immune response were differentially expressed in the papillomas arising on the K17KO mice correlating with increased numbers of infiltrating CD8+ T cells and upregulation of IFNγ-related genes, including CXCL9 and CXCL10, prior to complete regression. Blocking the receptor for CXCL9/CXCL10 prevented early regression. Our data provide a novel mechanism by which papillomavirus-infected cells evade host immunity and defines new therapeutic targets for treating persistent papillomavirus infections.


Asunto(s)
Queratina-17/inmunología , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Receptores CXCR3/metabolismo , Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunidad/genética , Interferón gamma/biosíntesis , Queratina-17/genética , Masculino , Ratones , Ratones Noqueados , Regulación hacia Arriba
16.
PLoS Pathog ; 16(1): e1008223, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905218

RESUMEN

Epstein-Barr virus (EBV) infection is closely linked to several human malignancies including endemic Burkitt's lymphoma, Hodgkin's lymphoma and nasopharyngeal carcinomas (NPC). Latent membrane protein 2 (LMP-2) of EBV plays a pivotal role in pathogenesis of EBV-related tumors and thus, is a potential target for diagnosis and targeted therapy of EBV LMP-2+ malignant cancers. Affibody molecules are developing as imaging probes and tumor-targeted delivery of small molecules. In this study, four EBV LMP-2-binding affibodies (ZEBV LMP-212, ZEBV LMP-2132, ZEBV LMP-2137, and ZEBV LMP-2142) were identified by screening a phage-displayed LMP-2 peptide library for molecular imaging and targeted therapy in EBV xenograft mice model. ZEBV LMP-2 affibody has high binding affinity for EBV LMP-2 and accumulates in mouse tumor derived from EBV LMP-2+ xenografts for 24 h after intravenous (IV) injection. Subsequent fusion of Pseudomonas exotoxin PE38KDEL to the ZEBV LMP-2 142 affibody led to production of Z142X affitoxin. This fused Z142X affitoxin exhibits high cytotoxicity specific for EBV+ cells in vitro and significant antitumor effect in mice bearing EBV+ tumor xenografts by IV injection. The data provide the proof of principle that EBV LMP-2-speicifc affibody molecules are useful for molecular imaging diagnosis and have potentials for targeted therapy of LMP-2-expressing EBV malignancies.


Asunto(s)
Herpesvirus Humano 4 , Inmunotoxinas/uso terapéutico , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Proteínas de la Matriz Viral/metabolismo , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inmunotoxinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Imagen Molecular , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/virología , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/terapia , Biblioteca de Péptidos , Unión Proteica , Proteínas de la Matriz Viral/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Protein Expr Purif ; 189: 105986, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600111

RESUMEN

To date, there is no functional characterization of EmGGPPS (from Elizabethkingia meningoseptica sp.F2) as enzymes catalyzing GGPP. In this research, maltose-binding protein (MBP), disulfide bond A (DbsA), disulfide bond C (DbsC), and two other small protein tags, GB1 (Protein G B1 domain) and ZZ (Protein A IgG ZZ repeat domain), were used as fusion partners to construct an EmGGPPS fusion expression system. The results indicated that the expression of MBP-EmGGPPS was higher than that of the other four fusion proteins in E. coli BL21 (DE3). Additionally, using EmGGPPS as a catalyst for the production of GGPP was verified using a color complementation assay in Escherichia coli. In parallel with it, the enzyme activity experiment in vitro showed that the EmGGPPS protein could produce GGPP, GPP and FPP. Finally, we successfully demonstrated MK-4 production in engineered E. coli by overexpression of EmGGPPS.


Asunto(s)
Farnesiltransferasa/genética , Flavobacteriaceae/enzimología , Proteínas de Unión a Maltosa/genética , Fosfatos de Poliisoprenilo/biosíntesis , Proteínas Recombinantes de Fusión/genética , Secuencia de Aminoácidos , Clonación Molecular , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Farnesiltransferasa/metabolismo , Flavobacteriaceae/genética , Expresión Génica , Proteínas de Unión a Maltosa/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
18.
Microb Cell Fact ; 21(1): 101, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643569

RESUMEN

BACKGROUND: Menaquinone-7 (MK-7), which is associated with complex and tightly regulated pathways and redox imbalances, is produced at low titres in Bacillus subtilis. Synthetic biology provides a rational engineering principle for the transcriptional optimisation of key enzymes and the artificial creation of cofactor regeneration systems without regulatory interference. This holds great promise for alleviating pathway bottlenecks and improving the efficiency of carbon and energy utilisation. RESULTS: We used a bottom-up synthetic biology approach for the synthetic redesign of central carbon and to improve the adaptability between material and energy metabolism in MK-7 synthesis pathways. First, the rate-limiting enzymes, 1-deoxyxylulose-5-phosphate synthase (DXS), isopentenyl-diphosphate delta-isomerase (Fni), 1-deoxyxylulose-5-phosphate reductase (DXR), isochorismate synthase (MenF), and 3-deoxy-7-phosphoheptulonate synthase (AroA) in the MK-7 pathway were sequentially overexpressed. Promoter engineering and fusion tags were used to overexpress the key enzyme MenA, and the titre of MK-7 was 39.01 mg/L. Finally, after stoichiometric calculation and optimisation of the cofactor regeneration pathway, we constructed two NADPH regeneration systems, enhanced the endogenous cofactor regeneration pathway, and introduced a heterologous NADH kinase (Pos5P) to increase the availability of NADPH for MK-7 biosynthesis. The strain expressing pos5P was more efficient in converting NADH to NADPH and had excellent MK-7 synthesis ability. Following three Design-Build-Test-Learn cycles, the titre of MK-7 after flask fermentation reached 53.07 mg/L, which was 4.52 times that of B. subtilis 168. Additionally, the artificially constructed cofactor regeneration system reduced the amount of NADH-dependent by-product lactate in the fermentation broth by 9.15%. This resulted in decreased energy loss and improved carbon conversion. CONCLUSIONS: In summary, a "high-efficiency, low-carbon, cofactor-recycling" MK-7 synthetic strain was constructed, and the strategy used in this study can be generally applied for constructing high-efficiency synthesis platforms for other terpenoids, laying the foundation for the large-scale production of high-value MK-7 as well as terpenoids.


Asunto(s)
Bacillus subtilis , Biología Sintética , Bacillus subtilis/metabolismo , Carbono/metabolismo , Ingeniería Metabólica/métodos , NAD/metabolismo , NADP/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
19.
Microb Cell Fact ; 21(1): 37, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279147

RESUMEN

BACKGROUND: The study and application of microbial consortia are topics of interest in the fields of metabolic engineering and synthetic biology. In this study, we report the design and optimisation of Elizabethkingia meningoseptica and Escherichia coli co-culture, which bypass certain limitations found during the molecular modification of E. meningoseptica, such as resistance to many antibiotics and fewer available molecular tools. RESULTS: The octaprenyl pyrophosphate synthase from E. meningoseptica sp. F2 (EmOPPS) was expressed, purified, and identified in the present study. Then, owing to the low vitamin K2 production by E. coli or E. meningoseptica sp. F2 monoculture, we introduced the E. meningoseptica and E. coli co-culture strategy to improve vitamin K2 biosynthesis. We achieved production titres of 32 mg/L by introducing vitamin K2 synthesis-related genes from E. meningoseptica sp. F2 into E. coli, which were approximately three-fold more than the titre achieved with E. meningoseptica sp. F2 monoculture. This study establishes a foundation for further engineering of MK-n (n = 4, 5, 6, 7, 8) in a co-cultivation system of E. meningoseptica and E. coli. Finally, we analysed the surface morphology, esterase activity, and membrane permeability of these microbial consortia using scanning electron microscopy, confocal laser scanning microscopy, and flow cytometry, respectively. The results showed that the co-cultured bacteria were closely linked and that lipase activity and membrane permeability improved, which may be conducive to the exchange of substances between bacteria. CONCLUSIONS: Our results demonstrated that co-culture engineering can be a useful method in the broad field of metabolic engineering of strains with restricted molecular modifications.


Asunto(s)
Chryseobacterium , Infecciones por Flavobacteriaceae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Consorcios Microbianos/genética , Vitamina K 2/metabolismo
20.
Appl Microbiol Biotechnol ; 106(21): 6993-7011, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36149454

RESUMEN

The biosynthesis of citric acid (CA) using Aspergillus niger as a carrier is influenced by mycelium morphology, which is determined by the expression level of morphology-related genes. As a key component of the fungal cell wall, chitin content has an important effect on morphogenesis, and to investigate the effects of this on fermentation performance, we used RNA interference to knockdown chitin synthase C (CHSC) and chitin synthase activator (CHS3) to obtain the single-gene mutant strains A. niger chs3 and chsC and the double mutant A. niger chs3C. We found that the CA fermentation performance of the two single mutants was significantly better than that of the double mutant. The mutant A. niger chs3-4 exhibited CA production potential compared to that of the parent strain in scale-up fermentation; we determined certain characteristics of CA high-yielding strain fermentation pellets. In addition, when chsC alone was silenced, there was very little change in chs3 mRNA levels, whereas those of chsC were significantly reduced when only chs3 was silenced. As this may be because of a synergistic effect between chsC and chs3, and we speculated that the latent activation target of CHS3 is CHSC, our results confirmed this hypothesis. This study is the first application of a separation and combination silence strategy of chitin synthase and chitin synthase activator in the morphology of A. niger CA fermentation. Furthermore, it provides new insights into the method for the morphological study of A. niger fermentation and the interaction of homologous genes. KEY POINTS: • The function of chitin synthase C (chsC) and chitin synthase activator (chs3) is tightly interrelated. • Mycelial morphology was optimized by knockdown of CHS3, resulting in the overproduction of citric acid. • The separation and combination silence strategies are promising tools for the interaction of homologous housekeeping genes.


Asunto(s)
Aspergillus niger , Quitina Sintasa , Quitina Sintasa/genética , Aspergillus niger/genética , Aspergillus niger/metabolismo , Ácido Cítrico , Fermentación , Quitina/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA