Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Mater ; 22(7): 880-887, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37337069

RESUMEN

Two-dimensional conjugated polymers (2DCPs), composed of multiple strands of linear conjugated polymers with extended in-plane π-conjugation, are emerging crystalline semiconducting polymers for organic (opto)electronics. They are represented by two-dimensional π-conjugated covalent organic frameworks, which typically suffer from poor π-conjugation and thus low charge carrier mobilities. Here we overcome this limitation by demonstrating two semiconducting phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type 2DCPs (2DCP-MPc, with M = Cu or Ni), which are constructed from octaaminophthalocyaninato metal(II) and naphthalenetetracarboxylic dianhydride by polycondensation under solvothermal conditions. The 2DCP-MPcs exhibit optical bandgaps of ~1.3 eV with highly delocalized π-electrons. Density functional theory calculations unveil strongly dispersive energy bands with small electron-hole reduced effective masses of ~0.15m0 for the layer-stacked 2DCP-MPcs. Terahertz spectroscopy reveals the band transport of Drude-type free carriers in 2DCP-MPcs with exceptionally high sum mobility of electrons and holes of ~970 cm2 V-1 s-1 at room temperature, surpassing that of the reported linear conjugated polymers and 2DCPs. This work highlights the critical role of effective conjugation in enhancing the charge transport properties of 2DCPs and the great potential of high-mobility 2DCPs for future (opto)electronics.


Asunto(s)
Estructuras Metalorgánicas , Polímeros , Electrónica , Electrones , Indoles
2.
Chemistry ; 30(38): e202400651, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705845

RESUMEN

Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr -1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

3.
Angew Chem Int Ed Engl ; 63(1): e202315238, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37953400

RESUMEN

Ambient electrochemical ammonia (NH3 ) synthesis is one promising alternative to the energy-intensive Haber-Bosch route. However, the industrial requirement for the electrochemical NH3 production with amperes current densities or gram-level NH3 yield remains a grand challenge. Herein, we report the high-rate NH3 production via NO2 - reduction using the Cu activated Co electrode in a bipolar membrane (BPM) assemble electrolyser, wherein BPM maintains the ion balance and the liquid level of electrolyte. Benefited from the abundant Co sites and optimal structure, the target modified Co foam electrode delivers a current density of 2.64 A cm-2 with the Faradaic efficiency of 96.45 % and the high NH3 yield rate of 279.44 mg h-1 cm-2 in H-type cell using alkaline electrolyte. Combined with in situ experiments and theoretical calculations, we found that Cu optimizes the adsorption behavior of NO2 - and facilitates the hydrogenation steps on Co sites toward a rapid NO2 - reduction process. Importantly, this activated Co electrode affords a large NH3 production up to 4.11 g h-1 in a homemade reactor, highlighting its large-scale practical feasibility.

4.
Angew Chem Int Ed Engl ; 61(39): e202208163, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35903982

RESUMEN

Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3 HHAE2 . This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3 HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 µA cm-2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.

5.
J Am Chem Soc ; 143(47): 19992-20000, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784212

RESUMEN

The electrochemical N2 reduction reaction (NRR) under ambient conditions is attractive in replacing the current Haber-Bosch process toward sustainable ammonia production. Metal-heteroatom-doped carbon-rich materials have emerged as the most promising NRR electrocatalysts. However, simultaneously boosting their NRR activity and selectivity remains a grand challenge, while the principle for precisely tailoring the active sites has been elusive. Herein, we report the first case of crystalline two-dimensional conjugated covalent organic frameworks (2D c-COFs) incorporated with M-N4-C centers as novel, defined, and effective catalysts, achieving simultaneously enhanced activity and selectivity of electrocatalytic NRR to ammonia. Such 2D c-COFs are synthesized based on metal-phthalocyanine (M = Fe, Co, Ni, Mn, Zn, and Cu) and pyrene units bonded by pyrazine linkages. Significantly, the 2D c-COFs with Fe-N4-C center exhibit higher ammonia yield rate (33.6 µg h-1 mgcat-1) and Faradaic efficiency (FE, 31.9%) at -0.1 V vs reversible hydrogen electrode than those with other M-N4-C centers, making them among the best NRR electrocatalysts (yield rate >30 µg h-1 mgcat-1 and FE > 30%). In situ X-ray absorption spectroscopy, Raman spectroelectrochemistry, and theoretical calculations unveil that Fe-N4-C centers act as catalytic sites. They show a unique electronic structure with localized electronic states at Fermi level, allowing for stronger interaction with N2 and thus faster N2 activation and NRR kinetics than other M-N4-C centers. Our work opens the possibility of developing metal-nitrogen-doped carbon-rich 2D c-COFs as superior NRR electrocatalyst and provides an atomic understanding of the NRR process on M-Nx-C based electrocatalysts for designing high-performance NRR catalysts.

6.
J Am Chem Soc ; 143(34): 13624-13632, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34342992

RESUMEN

The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables access to direct charge transport, dial-in lateral/vertical electronic devices, and the unveiling of transport mechanisms but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu2[PcM-O8], M = Cu or Fe) with an unprecedented edge-on layer orientation at the air/water interface. The edge-on structure formation is guided by the preorganization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity. Benefiting from the unique layer orientation, we are able to investigate the lateral and vertical conductivities by DC methods and thus demonstrate an anisotropic charge transport in the resulting Cu2[PcCu-O8] film. The directional conductivity studies combined with theoretical calculation identify that the intrinsic conductivity is dominated by charge transfer along the interlayer pathway. Moreover, a macroscopic (cm2 size) Hall-effect measurement reveals a Hall mobility of ∼4.4 cm2 V-1 s-1 for the obtained Cu2[PcCu-O8] film. The orientation control in semiconducting 2D c-MOFs will enable the development of various optoelectronic applications and the exploration of unique transport properties.

7.
Mol Med ; 27(1): 115, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544355

RESUMEN

BACKGROUND: Acute lung injury is an important factor that leads to the death of patients with pneumonia. Previous studies have shown that nicotinamide (NAM) plays a role in reducing cell damage, so this study explored the mechanism by which NAM functions in acute lung injury. METHODS: We explored the mechanism by which NAM affects acute lung injury in vivo and in vitro by qRT-PCR, western blotting and ELISA. RESULTS: The results showed that NAM could significantly reduce lung injury and proinflammatory mediator accumulation. Further mechanistic studies showed that NAM could significantly inhibit the MAPK and AKT/NF-κB signaling pathways. CONCLUSION: These results suggested that NAM may reduce the release of proinflammatory mediators by inhibiting the MAPK and AKT/NF-κB signaling pathways and ultimately alleviate lung injury.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Niacinamida/farmacología , Sustancias Protectoras/farmacología , Transducción de Señal , Lesión Pulmonar Aguda/patología , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7
8.
Angew Chem Int Ed Engl ; 60(34): 18666-18672, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34032341

RESUMEN

2D conjugated metal-organic frameworks (2D c-MOFs) are emerging as electroactive materials for chemiresistive sensors, but selective sensing with fast response/recovery is a challenge. Phthalocyanine-based Ni2 [MPc(NH)8 ] 2D c-MOF films are presented as active layers for polarity-selective chemiresisitors toward water and volatile organic compounds (VOCs). Surface-hydrophobic modification by grafting aliphatic alkyl chains on 2D c-MOF films decreases diffused analytes into the MOF backbone, resulting in a considerably accelerated recovery progress (from ca. 50 to ca. 10 s) during humidity sensing. Toward VOCs, the sensors deliver a polarity-selective response among alcohols but no signal for low-polarity aprotic hydrocarbons. The octadecyltrimethoxysilane-modified Ni2 [MPc(NH)8 ] based sensor displays high-performance methanol sensing with fast response (36 s)/recovery (13 s) and a detection limit as low as 10 ppm, surpassing reported room-temperature chemiresistors.

9.
J Am Chem Soc ; 142(52): 21622-21627, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33332109

RESUMEN

Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are emerging as a unique class of semiconducting 2D conjugated polymers for (opto)electronics and energy storage. Doping is one of the common, reliable strategies to control the charge carrier transport properties, but the precise mechanism underlying COF doping has remained largely unexplored. Here we demonstrate molecular iodine doping of a metal-phthalocyanine-based pyrazine-linked 2D c-COF. The resultant 2D c-COF ZnPc-pz-I2 maintains its structural integrity and displays enhanced conductivity by 3 orders of magnitude, which is the result of elevated carrier concentrations. Remarkably, Hall effect measurements reveal enhanced carrier mobility reaching ∼22 cm2 V-1 s-1 for ZnPc-pz-I2, which represents a record value for 2D c-COFs in both the direct-current and alternating-current limits. This unique transport phenomenon with largely increased mobility upon doping can be traced to increased scattering time for free charge carriers, indicating that scattering mechanisms limiting the mobility are mitigated by doping. Our work provides a guideline on how to assess doping effects in COFs and highlights the potential of 2D c-COFs to display high conductivities and mobilities toward novel (opto)electronic devices.

10.
Angew Chem Int Ed Engl ; 58(31): 10677-10682, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31169942

RESUMEN

Layered two-dimensional (2D) conjugated metal-organic frameworks (MOFs) represent a family of rising electrocatalysts for the oxygen reduction reaction (ORR), due to the controllable architectures, excellent electrical conductivity, and highly exposed well-defined molecular active sites. Herein, we report a copper phthalocyanine based 2D conjugated MOF with square-planar cobalt bis(dihydroxy) complexes (Co-O4 ) as linkages (PcCu-O8 -Co) and layer-stacked structures prepared via solvothermal synthesis. PcCu-O8 -Co 2D MOF mixed with carbon nanotubes exhibits excellent electrocatalytic ORR activity (E1/2 =0.83 V vs. RHE, n=3.93, and jL =5.3 mA cm-2 ) in alkaline media, which is the record value among the reported intrinsic MOF electrocatalysts. Supported by in situ Raman spectro-electrochemistry and theoretical modeling as well as contrast catalytic tests, we identified the cobalt nodes as ORR active sites. Furthermore, when employed as a cathode electrocatalyst for zinc-air batteries, PcCu-O8 -Co delivers a maximum power density of 94 mW cm-2 , outperforming the state-of-the-art Pt/C electrocatalysts (78.3 mW cm-2 ).

12.
J Am Chem Soc ; 138(32): 10226-31, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27463122

RESUMEN

Flexible power sources with high energy density are crucial for the realization of next-generation flexible electronics. Theoretically, rechargeable flexible zinc-air (Zn-air) batteries could provide high specific energy, while their large-scale applications are still greatly hindered by high cost and resources scarcity of noble-metal-based oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) electrocatalysts as well as inferior mechanical properties of the air cathode. Combining metallic Co4N with superior OER activity and Co-N-C with perfect ORR activity on a free-standing and flexible electrode could be a good step for flexible Zn-air batteries, while lots of difficulties need to be overcome. Herein, as a proof-of-concept experiment, we first propose a strategy for in situ coupling of strung Co4N and intertwined N-C fibers, by pyrolyzation of the novel pearl-like ZIF-67/polypyrrole nanofibers network rooted on carbon cloth. Originating from the synergistic effect of Co4N and Co-N-C and the stable 3D interconnected conductive network structure, the obtained free-standing and highly flexible bifunctional oxygen electrode exhibits excellent electrocatalytic activity and stability for both OER and ORR in terms of low overpotential (310 mV at 10 mA cm(-2)) for OER, a positive half-wave potential (0.8 V) for ORR, and a stable current density retention for at least 20 h, and especially, the obtained Zn-air batteries exhibit a low discharge-charge voltage gap (1.09 V at 50 mA cm(-2)) and long cycle life (up to 408 cycles). Furthermore, the perfect bendable and twistable and rechargeable properties of the flexible Zn-air battery particularly make it a potentially power portable and wearable electronic device.

13.
Angew Chem Int Ed Engl ; 55(34): 9937-41, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27436171

RESUMEN

Developing effective ways to recycle rusted stainless steel and to promote the sluggish oxygen evolution reaction (OER), associated with water splitting and metal-air batteries, is important for a resource-sustainable and environment-friendly society. Herein, we propose a strategy to enable rusted stainless steel plate to be used as an abundant and low-cost OER catalyst, wherein a hydrothermal combined in situ electrochemical oxidation-reduction cycle (EORC) method is developed to mimic and expedite the corrosion process, and thus activate stainless steel into free-standing OER electrodes. Benefiting from the plentiful electrolyte-accessible Fe/(Ni) oxyhydroxides, high conductivity and mechanical stability, this electrode exhibits remarkable OER performances including low overpotential, fast kinetics, and long-term durability. The slight degradation in current after long-term use can be repaired immediately in situ by an EORC.

14.
J Am Chem Soc ; 137(48): 15070-3, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26555852

RESUMEN

Development of an efficient hydrogen evolution reaction (HER) catalyst composed of earth-abundant elements is scientifically and technologically important for the water splitting associated with the conversion and storage of renewable energy. Herein we report a new class of Co-C-N complex bonded carbon (only 0.22 at% Co) for HER with a self-supported and three-dimensional porous structure that shows an unexpected catalytic activity with low overpotential (212 mV at 100 mA cm(-2)) and long-term stability, better than that of most traditional-metal catalysts. Experimental observations in combination with density functional theory calculations reveal that C and N hybrid coordination optimizes the charge distribution and enhances the electron transfer, which synergistically promotes the proton adsorption and reduction kinetics.

15.
Angew Chem Int Ed Engl ; 54(36): 10530-4, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26218453

RESUMEN

Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts.

16.
Angew Chem Int Ed Engl ; 53(51): 14235-9, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25331053

RESUMEN

Nitrogen-doped carbon (NC) materials have been proposed as next-generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich-like zeolitic imidazolate framework (ZIF) derived graphene-based nitrogen-doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open-circuit voltage and power density are obtained in direct methanol fuel cells.

17.
Food Chem ; 452: 139570, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723567

RESUMEN

RS-5 refers to the resistant starch formed by complexation of starch molecules with other molecules. In this study, the molecular mechanism of RS-5 was analysed. First, it was found, when α-amylase acted on the starch-lipid complexes, the glucose residues involved in complexation cannot be hydrolyzed by α-amylase, while the glucose residues not directly involved in complexation can be hydrolyzed. Second, lipid molecules are not necessary for the formation of RS-5 and can be replaced with small peptides or decanal molecules. Considering the multiple health hazards that may result from excessive lipid intake, small peptides composed of essential amino acids may be more desirable materials for RS-5 preparation. Third, starch-lipid complexes had strong interactions with α-amylase, which provides evidence in support of the sliding continuum hydrolysis hypothesis of α-amylase. These results revealed the mechanism of RS-5 at the molecular level, which provides a reference for the production and research of RS-5.


Asunto(s)
Almidón , alfa-Amilasas , Hidrólisis , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Almidón/química , Almidón/metabolismo , Almidón Resistente/metabolismo , Lípidos/química
18.
ChemSusChem ; 17(7): e202301050, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38126956

RESUMEN

Electrochemical nitrate reduction reaction (NO3RR) is a promising technology for ammonia production and denitrification of wastewater. Its application is seriously restricted by the development of the highly active and selective electrocatalyst and a rational electrolysis system. Here, we constructed an efficient electrochemical ammonia production process via nitrate reduction on the metallic Cu electrocatalyst when coupled with anodic sulfion oxidation reaction (SOR). The synthesized Cu catalyst delivers an excellent NH3 Faradaic efficiency of 96.0 % and a NH3 yield of 0.391 mmol h-1 cm-2 at -0.2 V vs. reversible hydrogen electrode, which mainly stem from the more favorable conversion of NO2 - to NH3 on Cu0. Importantly, the well-designed electrolysis system with cathodic NO3RR and anodic SOR achieves a dramatically reduced cell voltage of 0.8 V at 50 mA cm-2 in comparison with the one with anodic oxygen evolution reaction (OER) of 1.9 V. This work presents an effective strategy for the energy-saving ammonia production via constructing effective nitrate reduction catalyst and replacing the OER with SOR while removing the pollutants including nitrate and sulfion.

19.
Int J Biol Macromol ; 244: 125376, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37327934

RESUMEN

High hydrostatic pressure (HHP) is a novel technology used in the food-processing industry. Starch is an important renewable natural resource. The applications of starch are determined by its properties, which in turn are determined by its structure. In this study, the effects of HHP treatment on starch structure (granular structure, crystalline structure, molecular structure, and molecular conformation) and properties (pasting, retrogradation, thermal, digestive, rheological, swelling, solubility, water absorption, and oil absorption properties) are summarised. Additionally, the mechanism of HHP-induced gelatinisation is discussed. First, the strong hydration ability of starch molecules under high pressure facilitates the binding of water molecules to starch molecules via hydrogen bonding. These bound water molecules may block the channels inside the starch granules, leading to the formation of a sealed space. Finally, the granules disintegrate because of the intra/extra pressure difference. This study provides a reference for the application of HHP to starch processing and modification.


Asunto(s)
Almidón , Agua , Almidón/química , Fenómenos Químicos , Presión Hidrostática , Presión
20.
Front Plant Sci ; 14: 1200071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360706

RESUMEN

Xinjiang is the largest grape-producing region in China and the main grape cultivation area in the world. The Eurasian grape resources grown in Xinjiang are very rich in diversity. The sugar composition and content are the main factors that determine the quality of berries. However, there are currently no systematic reports on the types and contents of sugars in grapes grown in Xinjiang region. In this research, we evaluated the appearance and fruit maturity indicators of 18 grape varieties during fruit ripening and determined their sugar content using GC-MS. All cultivars primarily contained glucose, D-fructose, and sucrose. The glucose content in varieties varied from 42.13% to 46.80% of the total sugar, whereas the fructose and sucrose contents varied from 42.68% to 50.95% and 6.17% to 12.69%, respectively. The content of trace sugar identified in grape varieties varied from 0.6 to 2.3 mg/g. The comprehensive assessment by principal component analysis revealed strong positive correlations between some sugar components. A comprehensive study on the content and types of sugar will provide the foundation to determine the quality of grape cultivars and effective ways to utilize resources to improve sugar content through breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA