Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Oecologia ; 204(1): 59-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091103

RESUMEN

Rising temperatures pose a threat to the stability of climate regulation by carbon metabolism in subtropical forests. Although the effects of temperature on leaf carbon metabolism traits in sun-exposed leaves are well understood, there is limited knowledge about its impacts on shade leaves and the implications for ecosystem-climate feedbacks. In this study, we measured temperature response curves of photosynthesis and respiration for 62 woody species in summer (including both evergreen and deciduous species) and 20 evergreen species in winter. The aim was to uncover the temperature dependence of carbon metabolism in both sun and shade leaves in subtropical forests. Our findings reveal that shade had no significant effects on the mean optimum photosynthetic temperatures (TOpt) or temperature range (T90). However, there were decreases observed in mean stomatal conductance, mean area-based photosynthetic rates at TOpt and 25 °C, as well as mean area-based dark respiration rates at 25 °C in both evergreen and deciduous species. Moreover, the respiration-temperature sensitivity (Q10) of sun leaves was higher than that of shade leaves in winter, with the reverse being true in summer. Leaf economics spectrum traits, such as leaf mass per area, and leaf concentration of nitrogen and phosphorus across species, proved to be good predictors of TOpt, T90, mass-based photosynthetic rate at TOpt, and mass-based photosynthetic and respiration rate at 25 °C. However, Q10 was poorly predicted by these leaf economics spectrum traits except for shade leaves in winter. Our results suggest that model estimates of carbon metabolism in multilayered subtropical forest canopies do not necessitate independent parameterization of T90 and TOpt temperature responses in sun and shade leaves. Nevertheless, a deeper understanding and quantification of canopy variations in Q10 responses to temperature are necessary to confirm the generality of temperature-carbon metabolism trait responses and enhance ecosystem model estimates of carbon dynamics under future climate warming.


Asunto(s)
Ecosistema , Árboles , Temperatura , Árboles/fisiología , Hojas de la Planta/fisiología , Bosques , Fotosíntesis/fisiología
2.
Oecologia ; 202(4): 845-854, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37624444

RESUMEN

Cortex radius (CR) and stele radius (SR) are important functional traits associated with the nutrient acquisition and transport functions of fine roots, respectively. However, for developmental and anatomical reasons, the resource acquisition-transport relationship of fine roots is expected to be different for different root orders. To address this issue, critical fine root anatomical traits were examined for the first three orders of roots of 59 subtropical woody plants. Designating the most distal fine roots as order one, SR scaled isometrically with respect to root radius (RR) (i.e., SR ∝ RR1.0) in the three root orders, whereas CR scaled allometrically with respect to RR (i.e., CR ∝ RR>1.0) with the numerical values of scaling exponents increasing significantly with increasing root orders thereby indicating a disproportional increase in CR with increasing root orders. There were also differences between normalized root tissue (CR/RR and SR/RR) and RR in different root orders. A negative isometric relationship (i.e., SR/RR ∝ RR-1.0) existed between SR/RR and RR in three order roots, whereas the allometric exponent between CR/RR and RR increased with root order (from 0.88 to 1.55). Collectively, the data indicate that root anatomical and functional traits change as a function of RR and that these changes need to be considered when modeling fine root resource acquisition-transport functions.

3.
Plant Cell Environ ; 45(11): 3205-3218, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36029253

RESUMEN

The plant economics spectrum describes the trade-off between plant resource acquisition and storage, and sheds light on plant responses to environmental changes. However, the data used to construct the plant economics spectrum comes mainly from seed plants, thereby neglecting vascular non-seed plant lineages such as the ferns. To address this omission, we evaluated whether a fern economics spectrum exists using leaf and root traits of 23 fern species living under three subtropical forest conditions differing in light intensity and nutrient gradients. The fern leaf and root traits were found to be highly correlated and formed a plant economics spectrum. Specific leaf mass and root tissue density were found to be on one side of the spectrum (conservative strategy), whereas photosynthesis rate, specific root area, and specific root length were on the other side of the spectrum (acquisitive strategy). Ferns had higher photosynthesis and respiration rates, and photosynthetic nitrogen-use efficiency under high light conditions and higher specific root area and lower root tissue density in high nutrient environments. However, environmental changes did not significantly affect their resource acquisition strategies. Thus, the plant economics spectrum can be broadened to include ferns, which expands its phylogenetic and ecological implications and utility.


Asunto(s)
Helechos , Bosques , Nitrógeno , Fotosíntesis/fisiología , Filogenia , Hojas de la Planta/fisiología , Plantas
4.
Am J Bot ; 108(3): 423-431, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33792045

RESUMEN

PREMISE: Photosynthetic light-response (PLR) curves for leaves are important components of models related to carbon fixation in forest ecosystems, linking the Mitscherlich equation and Michaelis-Menten equation to traits of the leaf economics spectrum (LES). However, models do not consider changes in leaf habits (i.e., evergreen and deciduous) and within-canopy shading variation in these PLR curves. METHODS: Here, we measured the PLR curves in sun and shade leaves of 44 evergreen and 31 deciduous species to examine the relationships between variables of the Mitscherlich equation and Michaelis-Menten equation, leaf nitrogen (N) and phosphorus (P) content, and leaf mass per area (LMA). RESULTS: Small changes were caused by different leaf habits and shade variations in relationships linking variables of the two equations to leaf N and P content and LMA. Values of the scaling exponents for PLR curve parameters did not differ regardless of canopy position and leaf habit (P > 0.05). The PLR curves in species with different leaf habits (i.e., evergreen and deciduous) at different canopy positions could be predicted using the general allometric relations between leaf traits and PLR parameters in the two equations. For photosynthetic photon flux densities from 0 to 2000 µmol m-2 s-1 , approximately 71% (Mitscherlich equation) and 70% (Michaelis-Menten equation) of the net assimilation rates could be predicted. CONCLUSIONS: These findings indicate that leaf net assimilation rates can be predicted through the large available data for LES traits. Incorporation of values for these traits available in the LES databases into ecosystem models of forest productivity and carbon fixation warrants further investigation.


Asunto(s)
Ecosistema , Árboles , Bosques , Hábitos , Fotosíntesis , Hojas de la Planta
5.
Am J Bot ; 104(7): 993-998, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28701295

RESUMEN

PREMISE OF STUDY: Leaf area and dry mass are crucial for plant metabolic performance. The "diminishing returns" hypothesis predicts that leaf area will scale less than one with respect to leaf dry mass, indicating that the cost of light interception increases with leaf area. However, it remains unclear whether and how this scaling relationship varies among species growing in different environments. METHODS: More than 2000 measurements from five bamboo species adapted to high and low light and growing at different elevations in Wuyi Mountains, Southeast China, were used to explore how the leaf area vs. dry mass scaling relationship was affected by light and elevation. KEY RESULTS: The data indicate that (1) the normalization constants for leaf area vs. dry mass were positively but not significantly correlated with increasing leaf size and that (2) the scaling exponents remained numerically invariant among all five bamboo species, with a common slope of 0.85. Standardized major axis (SMA) analyses and comparisons of 95% confidence intervals also showed that the numerical values of the scaling exponents did not differ regardless of elevation and were similar between shaded and unshaded adapted species, whereas the numerical values of the normalization constants increased with decreasing light. CONCLUSIONS: The data collected for all five bamboo species are consistent with the "diminishing returns" hypothesis, i.e., the scaling exponents governing the leaf area vs. dry mass scaling relationship are less than one within and across species and are insensitive to light conditions or elevation.


Asunto(s)
Altitud , Luz , Hojas de la Planta/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , China
6.
Ann Bot ; 115(2): 303-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25564468

RESUMEN

BACKGROUND AND AIMS: Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs. METHODS: In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log-log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made. KEY RESULTS: The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants. CONCLUSIONS: The results support the AP theory's prediction that MA scales nearly one-to-one with MR (i.e. MA ∝ MR (≈1·0)) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents of the MA vs. MR relationship. This feature of the results suggests that plant size is the primary driver of the MA vs. MR biomass allocation pattern for understorey plants in sub-tropical forests.


Asunto(s)
Biomasa , Bosques , Modelos Biológicos , Árboles/fisiología , China , Luz , Fotosíntesis , Clima Tropical
7.
Am J Bot ; 101(4): 617-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24671408

RESUMEN

PREMISE OF THE STUDY: Empirical studies and theory indicate that respiration rates (R) of small plants scale nearly isometrically with both leaf biomass (ML) and total plant biomass (MT). These predictions are based on angiosperm species and apply only across a small range of body mass. Whether these relationships hold true for different plants, such as conifers, remains unclear. METHODS: We tested these predictions using the whole-plant maintenance respiration rates and the biomass allocation patterns of the seedlings of two conifer tree species and two angiosperm tree species. Model Type II regression protocols were used to compare the scaling exponents (α) and normalization constants (ß) across all four species and within each of the four species. KEY RESULTS: The data show that the scaling exponents varied among the four species and that all differed significantly from isometry. For conifers, scaling exponents for R vs. MT, and R and ML were numerically smaller than those of the broadleaved angiosperm species. However, across the entire data set, R scaled isometrically with ML and with MT as predicted by the West, Brown, and Enquist (WBE) theory. We also observed higher respiration rates for small conifer seedlings compared to comparably sized angiosperm seedlings. CONCLUSIONS: Our data add credence to the view that the R vs. M scaling relationship differs among species, and that in general, the numerical values of this interspecific scaling relationship will depend on the species pooled in the analysis and on the range of body sizes within the data set.


Asunto(s)
Cupressaceae/fisiología , Lauraceae/fisiología , Pinus/fisiología , Biomasa , Cupressaceae/crecimiento & desarrollo , Lauraceae/crecimiento & desarrollo , Modelos Biológicos , Pinus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Análisis de Regresión , Plantones/crecimiento & desarrollo , Plantones/fisiología , Especificidad de la Especie , Árboles/crecimiento & desarrollo , Árboles/fisiología
8.
Front Microbiol ; 15: 1323887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410396

RESUMEN

Introduction: The pivotal roles of both abundant and rare bacteria in ecosystem function are widely acknowledged. Despite this, the diversity elevational patterns of these two bacterial taxa in different seasons and influencing factors remains underexplored, especially in the case of rare bacteria. Methods: Here, a metabarcoding approach was employed to investigate elevational patterns of these two bacterial communities in different seasons and tested the roles of soil physico-chemical properties in structuring these abundant and rare bacterial community. Results and discussion: Our findings revealed that variation in elevation and season exerted notably effects on the rare bacterial diversity. Despite the reactions of abundant and rare communities to the elevational gradient exhibited similarities during both summer and winter, distinct elevational patterns were observed in their respective diversity. Specifically, abundant bacterial diversity exhibited a roughly U-shaped pattern along the elevation gradient, while rare bacterial diversity increased with the elevational gradient. Soil moisture and N:P were the dominant factor leading to the pronounced divergence in elevational distributions in summer. Soil temperature and pH were the key factors in winter. The network analysis revealed the bacteria are better able to adapt to environmental fluctuations during the summer season. Additionally, compared to abundant bacteria, the taxonomy of rare bacteria displayed a higher degree of complexity. Our discovery contributes to advancing our comprehension of intricate dynamic diversity patterns in abundant and rare bacteria in the context of environmental gradients and seasonal fluctuations.

9.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37847610

RESUMEN

Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).


Asunto(s)
Ecosistema , Plantas , Fotosíntesis , Respiración , Transporte de Electrón , Hojas de la Planta , Árboles
10.
Front Plant Sci ; 14: 1137487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082346

RESUMEN

Carbon absorption capability and morphological traits are crucial for plant leaf function performance. Here, we investigated the five bamboos at different elevations in Wuyi Mountain to clarify how the leaf trait responds to the elevational gradient and drives the photosynthetic capacity variations. The Standardized Major Axis Regression (SMA) analyses and the Structural Equation Model (SEM) are applied to identify how the bamboo leaf trait, including the ratio of leaf width to length (W/L), leaf mass per area (LMA), photosynthesis rates (Pn), leaf nitrogen, and phosphorus concentration (Leaf N and Leaf P) response to elevation environment, and the driving mechanism of Pn changes. Across the five bamboo species, our results revealed that leaf P scaled isometrically with respect to W/L, leaf N scaled allometrically as the 0.80-power of leaf P, and leaf N and leaf P scaled allometrically to Pn, with the exponents of 0.58 and 0.73, respectively. Besides, the SEM result showed altitude, morphological trait (W/L and LMA), and chemical trait (leaf N and leaf P) could together explain the 44% variations of Pn, with a standard total effect value of 70.0%, 38.5%, 23.6% to leaf P, leaf N, and W/L, respectively. The five bamboo species along the different elevational share an isometric scaling relationship between their leaf P and W/L, providing partial support for the general rule and operating between morphological and chemical traits. More importantly, the leaf W/L and leaf P as the main trait that affects leaf area and P utilization in growth and thus drives bamboo leaf photosynthetic capacity variations in different elevations.

11.
Front Plant Sci ; 14: 1187704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441171

RESUMEN

Foliage leaves are the primary photosynthetic organ of the majority of vascular plants, and their area vs. biomass scaling relationships provide valuable insights into the capacity and investment in light interception, which is critical to plant growth and performance. The "diminishing returns" hypothesis (DRH), which is based primarily on data from gymnosperms and angiosperms, posits that leaf (lamina) area scales with leaf dry mass. on average with a scaling exponent less than 1.0. However, it remains uncertain whether DRH applies to ferns or whether ecological factors affect the scaling exponents governing fern leaf morphometrics. To address this issue, 182 individuals of 28 subtropical ferns species were studied at low, medium, and high elevations (i.e., 600 m, 900 m, and 1200 m, respectively) in Mount Wuyi National Park, Jiangxi Province, China. The scaling relationships between leaf area and leaf biomass for individual and total leaf of ferns at different elevations were examined by using standardized major axis regression protocols. Analyses of the 28 fern species (using Blomberg K-value protocols) indicated no phylogenetic biases among the species compositions of the three different elevations. In addition, at the individual plant level, individual leaf area (ILA) did not differ significantly among the three different elevations (P > 0.05). However, individual leaf mass (ILM) was significantly higher at 900m than at 1200m (P < 0.05), resulting in a significantly higher leaf mass per area (LMA) at the 900m elevation than at the 600m and 1200m elevations (P < 0.05). The ILA and ILM at the 900m elevation were significantly higher than at the 600m elevation (P < 0.05). At the species level, ILA and ILM did not differ significantly among the three elevations (P > 0.05). The total leaf area per individual (TLA) did not differ significantly across the different elevations (P > 0.05). However, total leaf mass per individual (TLM) did differ significantly (P < 0.05). At the individual plant level, the scaling exponents for ILA vs. ILM and TLA vs. TLM at the three different elevations were all significantly less than 1.0 (P < 0.05), which was consistent with the DRH. At the species level, the scaling exponents for the ILA vs. ILM were significantly less than 1.0 at the middle and high elevations, but not at the low elevation. The scaling exponents of the TLA and TLM were numerically highest in the middle elevation, and all were less than 1.0 for the three elevations. These results indicate that the scaling relationships of leaf area versus mass of subtropical ferns at different elevations support the DRH hypothesis. The study further informs our understanding of the resource allocation strategies of an ancient and diverse plant lineage.

12.
Sci Total Environ ; 903: 166177, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572896

RESUMEN

The evergreen broad-leaf forest is subtropical zonal vegetation in China, and its species diversity and stability are crucial for maintaining forest ecosystem functions. The region is generally affected by global changes such as high levels of nitrogen deposition. Therefore, it is critical to determine the adaptation strategies of subtropical dominant species under nitrogen addition. Here, we conducted two-year field experiments with nitrogen addition levels as 0 kg N ha-1 yr-1 (CK), 50 kg N ha-1 yr-1 (LN) and 100 kg N ha-1 yr-1 (HN). We investigated the effects of nitrogen addition on leaf functional traits (including nutrition, structural and physiological characteristics) of five dominant species in subtropical evergreen broad-leaf forest. Results suggested that the effect of nitrogen addition on leaf functional traits was species-specific. Contrary to Rhododendron delavayi and Eurya muricata, Quercus glauca, Schima superba and Castanopsis eyrei all responded more to the HN treatment than LN treatment. Compared to other leaf functional traits, leaf anatomical structure traits had the highest average plasticity (0.246), and the relative effect of leaf photosynthetic property was highest (7.785) under N addition. Among the five species, S. superba was highest in terms of the index of plasticity for leaf functional traits under nitrogen addition, followed by Q. glauca, E. muricata, C. eyrei and R. delavayi. The major leaf functional traits representing the economic spectrum of leaves (LES) showed resource acquisitive strategy (high SLA, LNC, LPC, Pn) and conservative strategy (high LTD, LDMC, C/N) clustering on the opposite ends of the PCA axis. The PCA analysis indicated that species with high leaf plasticity adopt resource acquisitive strategy (S. superba and Q. glauca), whereas species with low leaf plasticity adopt resource conservative strategy (E. muricata, C. eyrei and R. delavayi). In aggregate, resource-acquisitive species benefit from nitrogen addition more than resource-conservative species, suggesting that S. superba and Q. glauca will occupy the dominant position in community succession under persistently elevated nitrogen deposition.

13.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2305-2313, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37899094

RESUMEN

To reveal the variation of leaf nutrient utilization strategies with altitude gradient in subtropical mountain broadleaved trees, 44 species of broadleaved trees at different altitudes (1400, 1600 and 1800 m) in Wuyi Mountains were selected to measure nutrient content, stoichiometric ratio, and nutrient resorption efficiency of green and senescent leaves, and analyzed their allometric growth relationships. The results showed that nitrogen (N) and phosphorus (P) contents in green leaves were significantly higher than those in senescent leaves, which increased with the increases of altitude. The average values of phosphorus resorption efficiency (PRE) and nitrogen resorption efficiency (NRE) were 48.3% and 34.9%, respectively. PRE was significantly higher than NRE. There was no significant difference in nutrient resorption efficiency with altitude. NRE had positive isokinetic growth with and mature leaf N content at low altitude (1400 m) and negative allometry growth with senescent leaf N content at high altitude (1800 m). PRE and N and P contents of senescent leaves had negative isokinetic growth at low altitude (1400 m) and negative allometry growth at high altitudes (1600 and 1800 m). PRE-NRE allometric growth index was 0.95 at each altitude. The nutrient contents of green and senescent leaves increased with the increases of altitude, but altitude did not affect nutrient resorption efficiency. Plants preferred to re-absorbed P from senescent leaves. Nutrient resorption efficiency of leaves at high altitude affected the nutrient status of senescent leaves.


Asunto(s)
Altitud , Árboles , China , Nitrógeno , Nutrientes , Fósforo , Hojas de la Planta
14.
Hortic Res ; 92022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35178562

RESUMEN

Sapindus mukorossi is an environmentally friendly plant and renewable energy source whose fruit has been widely used for biomedicine, biodiesel, and biological chemicals due to its richness in saponin and oil contents. Here, we report the first chromosome-scale genome assembly of S. mukorossi (covering ~391 Mb with a scaffold N50 of 24.66 Mb) and characterize its genetic architecture and evolution by resequencing 104 S. mukorossi accessions. Population genetic analyses showed that genetic diversity in the southwestern distribution area was relatively higher than that in the northeastern distribution area. Gene flow events indicated that southwest species may be the donor population for the distribution areas in China. Genome-wide selective sweep analysis showed that a large number of genes are involved in defense responses, growth and development, including SmRPS2, SmRPS4, SmRPS7, SmNAC2, SmNAC23, SmNAC102, SmWRKY6, SmWRKY26, and SmWRKY33. We also identified several candidate genes controlling six agronomic traits by genome-wide association studies, including SmPCBP2, SmbHLH1, SmCSLD1, SmPP2C, SmLRR-RKs, and SmAHP. Our study not only provides a rich genomic resource for further basic research on Sapindaceae woody trees but also identifies several economically significant genes for genomics-enabled improvements in molecular breeding.

15.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1207-1214, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35730078

RESUMEN

Based on the distribution records of Cunninghamia lanceolata, we used the maximum Entropy (MaxEnt) model and geographic information system (GIS) methods, combined with environmental factors such as climate and terrain, to predict the potential distribution areas suitable for C. lanceolata under current and future climate scenarios. The results showed that annual precipitation was the most important factor driving the distribution of C. lanceolata. Under the current climate scenario, the total area of suitable for C. lanceolata growth was about 3.28 million km2, accounting for about 34.5% of the total land area of China. Among all the suitable areas, the lowly, intermediately, and highly suitable areas accounted for 18.3%, 29.7% and 52.0% of the total, respectively. Under future climate scenarios, the suitable area of C. lanceolata would increase, showing a clear trend of northward expansion in China. A concentrated and contiguous distribution region highly suitable for C. lanceolata would appear in the humid subtropical areas of southern China. The model was tested by the receiver operating characteristic curve (ROC). The average area under the curve of ROC of the training set was 0.91, showing high reliability.


Asunto(s)
Cambio Climático , Cunninghamia , China , Ecosistema , Entropía , Predicción , Reproducibilidad de los Resultados
16.
Ying Yong Sheng Tai Xue Bao ; 33(1): 25-32, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35224922

RESUMEN

Trees are characterized with selective absorption of different forms of nitrogen. Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are the main forms of nitrogen for plant absorption. We examined the differences of absorption between NH4+-N and NO3--N for 1-year-old Machilus pauhoi seedlings planted in local hilly red soil in a pot experiment. A controlled experiment with 7 different NH4+-N/NO3--N treatments was conducted, to study the effects of nitrogen forms and different NH4+-N/NO3--N ratios on the growth and leaf traits of M. pauhoi seedlings. The results showed that there were no significant differences in the relative growth rate of ground diameter (GD), plant height (TH), and biomass (RGR) of M. pauhoi seedlings with different NH4+-N/NO3--N ratios for four months, but these parameters were relatively high under the treatment of NH4+-N:NO3--N=5:5. The seedlings of M. pauhoi didn't show obvious preference for NH4+-N and NO3--N in short term. The extremely low NH4+-N/NO3--N ratio application was unsuitable for their growth. Different NH4+-N/NO3--N application had significant effects on leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf relative water content (LRWC), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), water use efficiency (WUE), and photosynthetic nitrogen use efficiency (PNUE). M. pauhoi seedlings under the treatment of NH4+-N:NO3--N=1:9 had the highest LA, SLA, Pn, WUE and PNUE. However, the seedlings under the treatment of NH4+-N:NO3--N=9:1 had the lowest LDMC, leaf tissue density (LTD), LRWC and Ci. Different NH4+-N/NO3--N combined application did not affect leaf nitrogen content (LN) and leaf phosphorus content (LP), which were highest under the treatment of NH4+-N:NO3--N=5:5. Across different NH4+-N/NO3--N combined treatments, GD, TH, and RGR were significantly negatively correlated with SLA, while both GD and RGR were significantly negatively correlated with PNUE. Our results could provide theoretical basis for precise nutrient management and high-efficiency cultivation techniques during the seedling stage of the M. pauhoi.


Asunto(s)
Compuestos de Amonio , Lauraceae , Nitratos , Nitrógeno , Hojas de la Planta , Plantones
17.
Ying Yong Sheng Tai Xue Bao ; 33(2): 337-343, 2022 Feb.
Artículo en Zh | MEDLINE | ID: mdl-35229506

RESUMEN

Both nitrogen (N) and phosphorus (P) are the main limiting elements for plant growth in terrestrial ecosystems. Fine roots play a critical role in plant growth. To reveal the effects of combined N and P addition on fine root traits of Machilus pauhoi, we performed a field N and P addition experiment in the midmonth from April to September in 2016 and 2017 in a 3-year M. pauhoi forest (N and P supply ratios were 8:1, 10:1, 12:1, 15:1). Both fine root morphological traits (specific root length, specific root area, average diameter, root tissue density) and stoichiometric traits (total carbon content, total nitogen content and carbon-nitrogen ratio) were analyzed. The results showed that the effects of combined application of N and P on fine root raits varied with seasons. In June, fertilization significantly increased specific root area, total nitrogen content and specific root length of 0-1 mm fine root, but decreased root tissuse density, carbon-nitrogen ratio and average diameter of 0-1 mm root. The most obvious change of fine root traits in June was found under the treatment with a N and P supply ratio of 12:1. In December, combined N and P addition significantly increased root tissue density, total nitrogen content, carbon-nitrogen ratio as well as fine root biomass with the diameter of 0-1 mm. The results of principal component analysis showed that different N and P supply ratios exerted different effects on the relationships among fine root traits. Fine root traits were distributed at both ends of Axis 1 when treated with 12:1 N:P, while distributed at Axis 1 and Axis 2 under other treaments. There was a significant negative correlation between fine root average diameter variation and the relative plant growh rate. The relationship among fine root traits, and between fine root traits and the relative growth rate of plant biomass were optimally coordinated at the treament with a N:P ratio of 12:1.


Asunto(s)
Nitrógeno , Fósforo , Biomasa , Ecosistema , Bosques , Nitrógeno/análisis , Raíces de Plantas , Suelo
18.
Front Plant Sci ; 12: 692484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367215

RESUMEN

Sapindus mukorossi Gaertn., an important oleaginous woody plant, has garnered increasing research attention owing to its potential as a source of renewable energy (biodiesel). Leaf structural traits are closely related to plant size, and they affect the fruit yield and oil quality. However, plant size factors that predominantly contribute to leaf structural traits remain unknown. Therefore, the purpose of this study was to understand the associations between leaf structural traits and plant size factors in even-aged stands of S. mukorossi. Results showed that leaf length (LL) and leaf area (LA) markedly increased with the increasing diameter at breast height (DBH) and tree height (TH), although other leaf structural traits did not show noticeable changes. Difference in slopes also indicated that the degree of effect of plant size factors on leaf structural traits was in the order of TH > DBH. Leaf structural traits showed no systematic variation with crown width (CW). LA was significantly positively correlated with LL, leaf width (LW), LL/LW, and leaf thickness (LT) and was significantly but negatively correlated with leaf tissue density (LTD) and leaf dry mass content (LDMC). Specific leaf area showed a significantly negative correlation with LT, LDMC, and LTD. LTD showed a significantly positive correlation with LDMC, but a negative correlation with LT. The results were critical to understand the variability of leaf structural traits with plant size, can provide a theoretical foundation for further study in the relationship between leaf structural traits and fruit yield, and regulate leaf traits through artificial management measures to promote plant growth and fruit yield.

19.
Front Plant Sci ; 12: 778045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35082808

RESUMEN

Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (T opt), photosynthetic rate at T opt, temperature sensitivity (Q 10), and the rate of respiration at a standard temperature of 25°C (R 25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. T opt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q 10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R 25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R 25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.

20.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1193-1200, 2021 Apr.
Artículo en Zh | MEDLINE | ID: mdl-33899387

RESUMEN

Nutrient resorption is an important strategy of nutrient conservation, which reflecting the ability of plants to conserve and utilize nutrients and adapt to environment. To explore the relationship between nutrient content and nutrient resorption of broadleaved woody species of different life forms (i.e., evergreen vs. deciduous), we sampled 30 broadleaved woody species in subtropical region of China located in Yangjifeng National Nature Reserve, Jiangxi Province. The nitrogen (N) and phosphorus (P) concentrations in green and senescent leaves of each species were measured to calculate nutrient resorption efficiency. Furthermore, we analyzed the relationship of leaf nutrient concentration and resorption efficiency for the different life forms. The results showed that N and P concentrations in green leaves were significantly higher in deciduous trees than those in evergreen trees. The P concentrations of senescent leaves in deciduous woody species was significantly higher than that in evergreen woody species. There was no significant difference of N concentration in senescent leaves between evergreen and deciduous species. Nitrogen resorption efficiency (NRE) and phosphorus resorption efficiency (PRE) of the 30 broadleaved woody species were 49.6% and 50.9%, respectively. There were no significant differences between the NRE and PRE of evergreen and deciduous species. NRE and PRE negatively correlated with N and P concentrations in senescent leaves, respectively. Additionally, evergreen and deciduous species showed similar relationships between nutrient resorption efficiency and nutrient concentration in senescent leaves. The sca-ling exponent of allometric relationship between NRE and PRE was 1.18 across all the species. The nutrient resorption efficiency of all the species were affected by the nutrient status of the senesced leaves. Plants examined in this study generally re-absorbed P from senescing leaves than N.


Asunto(s)
Nitrógeno , Fósforo , China , Hojas de la Planta , Plantas , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA