Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(39): e2117988119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36126099

RESUMEN

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype for its high rates of relapse, great metastatic potential, and short overall survival. How cancer cells acquire metastatic potency through the conversion of noncancer stem-like cells into cancer cells with stem-cell properties is poorly understood. Here, we identified the long noncoding RNA (lncRNA) TGFB2-AS1 as an important regulator of the reversibility and plasticity of noncancer stem cell populations in TNBC. We revealed that TGFB2-AS1 impairs the breast cancer stem-like cell (BCSC) traits of TNBC cells in vitro and dramatically decreases tumorigenic frequency and lung metastasis in vivo. Mechanistically, TGFB2-AS1 interacts with SMARCA4, a core subunit of the SWI/SNF chromatin remodeling complex, and results in transcriptional repression of its target genes including TGFB2 and SOX2 in an in cis or in trans way, leading to inhibition of transforming growth factor ß (TGFß) signaling and BCSC characteristics. In line with this, TGFB2-AS1 overexpression in an orthotopic TNBC mouse model remarkably abrogates the enhancement of tumor growth and lung metastasis endowed by TGFß2. Furthermore, combined prognosis analysis of TGFB2-AS1 and TGFß2 in TNBC patients shows that high TGFB2-AS1 and low TGFß2 levels are correlated with better outcome. These findings demonstrate a key role of TGFB2-AS1 in inhibiting disease progression of TNBC based on switching the cancer cell fate of TNBC and also shed light on the treatment of TNBC patients.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Animales , ADN Helicasas/genética , Humanos , Neoplasias Pulmonares/secundario , Ratones , Recurrencia Local de Neoplasia , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta2/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
2.
Cell Mol Life Sci ; 80(1): 5, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36477655

RESUMEN

It has been established that long noncoding RNAs (lncRNAs) play a crucial role in various cancer types, and there are vast numbers of long noncoding RNA transcripts that have been identified by high-throughput methods. However, the biological function of many novel aberrantly expressed lncRNAs remains poorly elucidated, especially in gastric cancer (GC). Here, we first identified a novel lncRNA termed LENGA (Low Expression Noncoding RNA in Gastric Adenocarcinoma), which was significantly downregulated in GC tissues compared to adjacent normal tissues. Next, we found that reduced expression of LENGA in GC was also associated with a shorter life expectancy. The proliferation, migration, and invasion of GC cells were increased after LENGA knockdown but restrained after LENGA overexpression in vitro and in vivo. It was further demonstrated that LENGA physically binds to BRD7 (bromodomain-containing 7) in the bromodomain domain and acts as a scaffold that enhances the interaction between BRD7 and TP53 (tumor protein p53), regulating the expression of a subset of genes in the p53 pathway, including CDKN1A (cyclin-dependent kinase inhibitor 1A) and PCDH7 (protocadherin 7), at the transcriptional level. Consistently, the expression of CDKN1A has a positive correlation with LENGA in GC patients. Taken together, this study uncovers a novel tumor suppressor lncRNA, LENGA, and describes its biological function, molecular mechanism, and clinical significance. This highlights the potential importance of targeting the LENGA/BRD7/TP53 axis in GC treatment.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Humanos , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Cromosómicas no Histona
3.
Breast Cancer Res Treat ; 189(3): 607-619, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34370213

RESUMEN

PURPOSE: Tumor metastasis is the main cause of death from breast cancer patients and cell migration plays a critical role in cancer metastasis. Recent studies have shown long non-coding RNAs (lncRNAs) play an essential role in the initiation and progression of cancer. In the present study, the role of an LncRNA, Rho GTPase Activating Protein 5- Antisense 1 (ARHGAP5-AS1) in breast cancer was investigated. METHODS: RNA sequencing was performed to find out dysregulated LncRNAs in MDA-MB-231-LM2 cells. Transwell migration assays and F-actin staining were utilized to estimate cell migration ability. RNA pulldown assays and RNA immunoprecipitation were used to prove the interaction between ARHGAP5-AS1 and SMAD7. Western blot and immunofluorescence imaging were used to examine the protein levels. Dual luciferase reporter assays were performed to evaluate the activation of TGF-ß signaling. RESULTS: We analyzed the RNA-seq data of MDA-MB-231 and its highly metastatic derivative MDA-MB-231-LM2 cell lines (referred to as LM2) and identified a novel lncRNA (NR_027263) named as ARHGAP5-AS1, which expression was significantly downregulated in LM2 cells. Further functional investigation showed ARHGAP5-AS1 could inhibit cell migration via suppression of stress fibers in breast cancer cell lines. Afterwards, SMAD7 was further identified to interact with ARHGAP5-AS1 by its PY motif and thus its ubiquitination and degradation was blocked due to reduced interaction with E3 ligase SMURF1 and SMURF2. Moreover, ARHGAP5-AS1 could inhibit TGF-ß signaling pathway due to its inhibitory role on SMAD7. CONCLUSION: ARHGAP5-AS1 inhibits breast cancer cell migration via stabilization of SMAD7 protein and could serve as a novel biomarker and a potential target for breast cancer in the future.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Proteína smad7 , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , ARN Largo no Codificante/genética , Proteína smad7/genética , Ubiquitina-Proteína Ligasas
4.
RNA Biol ; 18(11): 1791-1806, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33478328

RESUMEN

The adaptation of tumour cells to hypoxic microenvironment is one of the most significant characteristics of many malignant tumour diseases including hepatocarcinoma. Recently, long non-coding RNAs (lncRNAs) have been reported to play important roles in the various levels of gene regulation thus functioning in growth and survival of tumour cells. Here, new hypoxia-related lncRNAs in hepatocarcinoma cells were screened and validated by lncRNA chip-array as well as real-time RT-PCR. Among them, a hypoxia-activated lncRNA that we identified and termed Hypoxia-Activated BNIP3 Overlapping Non-coding RNA (HABON), was not only regulated by hypoxic-induced factor-1α (HIF-1α) but its expression increased significantly under hypoxia in tumour cells. We deciphered the biological characteristics of HABON including its cell localization, genomic location, as well as its full-length sequence, and proved HABON could promote growth, proliferation and clone-formation of hepatocarcinoma cells under hypoxia. Then, we revealed that HABON was transcriptionally activated by HIF-1α in hypoxic cells, furthermore, it could interact with HIF-1α and promote its protein degradation, thus affecting transcription of HIF-1α's target genes to exert its effects on cells. Besides, the elevated expression of HABON under hypoxia could promote the transcriptional activation of BNIP3 through HIF-1α, and increasing the expression level of BNIP3. This research provides a novel clue for the adaptive survival and growth mechanism of tumour under hypoxia, and gives a way to reveal the nature of tumour cells' resistance characteristics to harsh microenvironment.


Asunto(s)
Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/fisiopatología , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Apoptosis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Comunicación Celular , Proliferación Celular , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral
5.
Biol Res ; 53(1): 43, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993809

RESUMEN

BACKGROUND: Breast cancer, the most common cancer in women worldwide, causes the vast majority of cancer-related deaths. Undoubtedly, tumor metastasis and recurrence are responsible for more than 90 percent of these deaths. MicroRNAs are endogenous noncoding RNAs that have been integrated into almost all the physiological and pathological processes, including metastasis. In the present study, the role of miR-128 in breast cancer was investigated. RESULTS: Compared to the corresponding adjacent normal tissue, the expression of miR-128 was significantly suppressed in human breast cancer specimens. More importantly, its expression level was reversely correlated to histological grade of the cancer. Ectopic expression of miR-128 in the aggressive breast cancer cell line MDA-MB-231 could inhibit cell motility and invasive capacity remarkably. Afterwards, Metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric that implicated in various aspects of cancer progression and metastasis, was further identified as a direct target gene of miR-128 and its expression level was up-regulated in clinical samples as expected. Moreover, knockdown of MTDH in MDA-MB-231 cells obviously impaired the migration and invasion capabilities, whereas re-expression of MTDH abrogated the suppressive effect caused by miR-128. CONCLUSIONS: Overall, these findings demonstrate that miR-128 could serve as a novel biomarker for breast cancer metastasis and a potent target for treatment in the future.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Invasividad Neoplásica , Neoplasias de la Mama/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana , MicroARNs/genética , MicroARNs/fisiología , Invasividad Neoplásica/genética , Recurrencia Local de Neoplasia , Proteínas de Unión al ARN
6.
Biochem Biophys Res Commun ; 511(1): 57-62, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30770102

RESUMEN

Long non-coding RNAs (lncRNAs) act as tumor suppressors or oncogenes in tumor development and progression. In the present study, we explored the expression and biological role of the lncRNA DNM3OS in gastric cancer (GC). We observed that DNM3OS was upregulated in GC tissues and cell lines, and high DNM3OS expression was correlated with malignant features and served as an indicator of a poor prognosis for GC patients. DNM3OS knockdown inhibited the proliferation of GC cells, and reduced DNM3OS suppressed tumor growth in vivo. Moreover, DNM3OS depletion inhibited the migration and invasion of GC cells through the suppression of the Snail-mediated epithelial-mesenchymal transition (EMT). In conclusion, we demonstrated that DNM3OS serves as an oncogenic lncRNA in GC, and we implicated DNM3OS as a promising prognostic factor and a potential therapeutic target for GC patients.


Asunto(s)
Transición Epitelial-Mesenquimal , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , Factores de Transcripción de la Familia Snail/genética , Neoplasias Gástricas/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Invasividad Neoplásica/patología , Neoplasias Gástricas/patología
7.
Exp Cell Res ; 362(2): 378-385, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29208462

RESUMEN

MicroRNAs (miRNAs) play critical roles in breast cancer cell biological processes, including proliferation and apoptosis by inhibiting the expression of their target genes. Herein, we reported that miR-630 overexpression initiates apoptosis, blocks cell cycle progression and suppresses cell proliferation in breast cancer cells. Furthermore, BMI1, a member of polycomb group family, was identified as a direct target of miR-630, and there was a negative correlation between the expression levels of BMI1 and miR-630 in human breast cancer samples. With a series of biology approaches, subsequently, we proved that BMI1 was a functional downstream target of miR-630 and mediated the property of miR-630-dependent inhibition of breast cancer progression. Taken together, these findings provide further evidence on the tumor-suppression function of miR-630 in breast cancer, and clarify BMI1 as a novel functional target gene of miR-630.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Apoptosis/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos
8.
Carcinogenesis ; 34(3): 713-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23250910

RESUMEN

MicroRNAs (miRNAs or miR) have been integrated into tumorigenic programs as either oncogenes or tumor suppressor genes. The miR-124 was reported to be attenuated in several tumors, such as glioma, medulloblastoma and hepatocellular carcinoma. However, its role in cancer remains greatly elusive. In this study, we show that the miR-124 expression is significantly suppressed in human breast cancer specimens, which is reversely correlated to histological grade of the cancer. More intriguingly, ectopic expression of miR-124 in aggressive breast cancer cell lines MDA-MB-231 and BT-549 strongly inhibits cell motility and invasive capacity, as well as the epithelial-mesenchymal transition process. Also, lentivirus-delivered miR-124 endows MDA-MB-231 cells with the ability to suppress cell colony formation in vitro and pulmonary metastasis in vivo. Further studies have identified the E-cadherin transcription repressor Slug as a direct target gene of miR-124; its downregulation by miR-124 increases the expression of E-cadherin, a hallmark of epithelial cells and a repressor of cell invasion and metastasis. Moreover, knockdown of Slug notably impairs the motility of MDA-MB-231 cells, whereas re-expression of Slug abrogates the reduction of motility and invasion ability induced by miR-124 in MDA-MB-231 cells. These findings highlight an important role for miR-124 in the regulation of invasive and metastatic potential of breast cancer and suggest a potential application of miR-124 in cancer treatment.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/secundario , MicroARNs/fisiología , Factores de Transcripción/genética , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Sitios de Unión , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica , Trasplante de Neoplasias , Interferencia de ARN , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Carga Tumoral
9.
Sheng Li Xue Bao ; 64(4): 403-11, 2012 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-22907300

RESUMEN

To search the microRNAs (miRNA) which suppress metastasis of breast cancer, we utilize three well known micoRNA target prediction programs, Targetscan, Pictar and miRanda, to select the microRNAs that target the genes related to tumor metastasis. We chose MDA-MB-231 with high metastasis ability as the model to evaluate the effect of miRNAs on cell motility through Transwell migration assay. After the first round of screening, miR-129 is found to significantly inhibit the migration of MDA-MB-231 both in Transwell migration assay and wound healing assay. Furthermore, miR-129 also shows great suppressive ability to cell mobility and migration in another two breast cancer cell lines BT549 and MDA-MB-435s. Most importantly, miR-129 is down-regulated both in breast cancer tissues compared with the paired adjacent normal breast tissues, and in breast cancer cell lines compared with normal breast epithelial cell MCF10A (P < 0.05). These results indicate that over-expression of miR-129 could inhibit breast cancer motility and migration, and the down-regulation of miR-129 may participate in the breast cancer migration and metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , MicroARNs/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Invasividad Neoplásica
10.
Cell Death Discov ; 8(1): 171, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387966

RESUMEN

Hypoxia is an important feature of the tumor microenvironment (TME). While targeting hypoxic TME is emerging as a potential strategy for treating solid tumors including liver cancer. Recent studies have shown that hypoxia can regulate tumor adaptation to hypoxic TME through long non-coding RNA (lncRNA). In the previous study, we identify a novel hypoxia-activated lncRNA and termed it as HABON. Here, we demonstrated that knockdown of HABON caused necroptosis of tumor tissue and inhibited the subcutaneous tumor growth of SMMC-7721 cells in nude mice. Moreover, knockdown of HABON increased RIPK1 and MLKL expression as well as their phosphorylation level in SMMC-7721 and Huh7 liver cancer cells. Meanwhile, Necrostatin-1 and GSK872 could restore cell death of liver cancer cells caused by knockdown of HABON under hypoxia. The above results suggested that HABON could inhibit hypoxia-induced necroptosis of liver cancer cells. Mechanically, knockdown of HABON in liver cancer cells aggravated mitochondrial dysfunction caused by hypoxia. Furthermore, the RNA pull-down combined with mass spectrometry analysis identified HABON can interact with mitochondria-related protein VDAC1 and the RNA immunoprecipitation (RIP) analysis proved the interaction. In addition, we proved that VDAC1 mediated the mitochondrial permeability transition pore (mPTP) opening, mitochondrial dysfunction, as well as necroptosis caused by knockdown of HABON. Overall, our work demonstrates HABON can reduce hypoxia-induced necroptosis of liver cancer cells and suggests that inhibition of HABON in the hypoxic TME is a potential therapeutic strategy for treating liver cancer.

11.
Front Oncol ; 12: 887257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35785192

RESUMEN

Branched-chain amino acids (BCAAs) are the three essential amino acids including leucine, isoleucine, and valine. BCAA metabolism has been linked with the development of a variety of tumors. However, the impact of dietary BCAA intake on breast tumor progression and metastasis remains to be fully explored. Here, we unexpectedly find that the elevated BCAA, either in the genetic model or via increasing dietary intake in mice, suppresses the tumor growth and lung metastasis of breast cancer. The survival analysis shows that BCAA catabolic gene expression is strongly associated with long-term oncological outcomes in patients with breast cancer. In Pp2cm knockout mice in which BCAAs accumulate due to the genetic defect of BCAA catabolism, the breast tumor growth is suppressed. Interestingly, while the cell proliferation and tumor vasculature remain unaffected, more cell death occurs in the tumor in Pp2cm knockout mice, accompanied with increased natural killer (NK) cells. Importantly, increasing BCAA dietary intake suppresses breast tumor growth in mice. On the other hand, there are fewer lung metastases from primary breast tumor in Pp2cm knockout mice and the high BCAA diet-fed mice, suggesting high BCAA also suppresses the lung metastasis of breast cancer. Furthermore, low BCAA diet promotes lung colonization of breast cancer cells in tail vein model. The migration and invasion abilities of breast cancer cells are impaired by high concentration of BCAA in culture medium. The suppressed tumor metastasis and cell migration/invasion abilities by elevated BCAA are accompanied with reduced N-cadherin expression. Together, these data show high BCAA suppresses both tumor growth and metastasis of breast cancer, demonstrating the potential benefits of increasing BCAA dietary intake in the treatment of breast cancer.

12.
Carcinogenesis ; 32(1): 2-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20952513

RESUMEN

The role of miR-26a in carcinogenesis appears to be a complicated one, in the sense that both oncogenic and tumor suppressive effects were reported in cancers such as glioblastoma and hepatocellular carcinoma, respectively. Here, we report for the first time that miR-26a is downregulated in breast cancer specimens and cell lines and its transient transfection initiates apoptosis of breast cancer cell line MCF7 cells. Furthermore, retrovirus-delivered miR-26a impairs the in vitro colony forming and in vivo tumor-loading ability of MCF7 cells. Subsequently, MTDH and EZH2 are identified as two direct targets of miR-26a and they are significantly upregulated in breast cancer. MCF7 xenografts with exogenous miR-26a show that a decrease in expression of both MTDH and EZH2 is accompanied by an increase in apoptosis. Moreover, knockdown of MTDH causes apoptosis while reexpression of MTDH partially reverses the proapoptotic effect of miR-26a in MCF7 cells. Our findings suggest that miR-26a functionally antagonizes human breast carcinogenesis by targeting MTDH and EZH2.


Asunto(s)
Apoptosis/genética , Neoplasias de la Mama/genética , Moléculas de Adhesión Celular/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Factores de Transcripción/genética , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/metabolismo , Transformación Celular Neoplásica/genética , Fragmentación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Humanos , Inmunohistoquímica , Proteínas de la Membrana , Ratones , Ratones Desnudos , Complejo Represivo Polycomb 2 , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
13.
Apoptosis ; 14(5): 699-710, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19360472

RESUMEN

Dihydrofolate reductase (DHFR) is a key enzyme for the synthesis of thymidylate, and therefore, of DNA. By applying subcellular proteomic analysis, we identified that the DHFR protein was translocated from cytoplasm into the nucleus when apoptosis was induced by NSC606985, a camptothecin analogue. The nuclear translocation of DHFR protein during apoptosis was independent of the cellular context, but it was more sensitive in cell death induction by DNA damaging agents such as doxorubicin, etoposide and ultraviolent radiation than endoplasmic reticulum stressors (brefeldin-A and tunicamycin) and anti-microtubule agents (paclitaxel and nocodozole). The addition of methotrexate almost completely blocked the nuclear translocation of DHFR protein. Further investigations showed that the nuclear translocation of DHFR was not a pre-requisite for DNA damage induced apoptosis. Therefore, its potential biological significance remains to be further explored.


Asunto(s)
Apoptosis , Núcleo Celular/enzimología , Daño del ADN , Tetrahidrofolato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Camptotecina/análogos & derivados , Camptotecina/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/patología , Activación Enzimática/efectos de los fármacos , Etopósido/farmacología , Humanos , Leucemia/enzimología , Leucemia/patología , Metotrexato/farmacología , Microtúbulos/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/química , Transporte de Proteínas/efectos de los fármacos
14.
Cell Death Dis ; 9(7): 752, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970901

RESUMEN

The miR-133b, a commonly recognized muscle-specific miRNA, was reported to be deregulated in many kinds of cancers. However, its potential roles in tumorigenesis remain greatly elusive. Herein, we demonstrate that miR-133b is significantly suppressed in human breast cancer specimens, which is reversely correlated to histological grade of the cancer. Ectopic expression of miR-133b suppresses clonogenic ability and metastasis-relevant traits in vitro, as well as carcinogenesis and pulmonary metastasis in vivo. Further studies have identified Sox9, c-MET, and WAVE2 as direct targets of miR-133b, in which Sox9 contributes to all miR-133b-endowed effects including cell proliferation, colony formation, as well as cell migration and invasion in vitro. Moreover, re-expression of Sox9 reverses miR-133b-mediated metastasis suppression in vivo. Taken together, these findings highlight an important role for miR-133b in the regulation of tumorigenesis and metastatic potential of breast cancer and suggest a potential application of miR-133b in cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , MicroARNs/metabolismo , Factor de Transcripción SOX9/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Técnicas In Vitro , MicroARNs/genética , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Factor de Transcripción SOX9/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
15.
Cell Death Dis ; 8(1): e2529, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28055013

RESUMEN

MicroRNA (miRNA) is involved in the progression and metastasis of diverse human cancers, including breast cancer, as strong evidence has been found that miRNAs can act as oncogenes or tumor suppressor genes. Here, we show that miR-494 is decreased in human breast cancer specimens and breast cancer cell lines. Ectopic expression of miR-494 in basal-like breast cancer cell lines MDA-MB-231-LUC-D2H3LN and BT-549 inhibits clonogenic ability and metastasis-relevant traits in vitro. Moreover, ectopic expression of miR-494 suppresses neoplasm initiation as well as pulmonary metastasis in vivo. Further studies have identified PAK1, as a direct target gene of miR-494, contributes to the functions of miR-494. Remarkably, the expression of PAK1 is inversely correlated with the level of miR-494 in human breast cancer samples. Furthermore, re-expression of PAK1 partially reverses miR-494-mediated proliferative and clonogenic inhibition as well as migration and invasion suppression in breast cancer cells. Taken together, these findings highlight an important role for miR-494 in the regulation of progression and metastatic potential of breast cancer and suggest a potential application of miR-494 in breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Quinasas p21 Activadas/genética , Animales , Neoplasias de la Mama/patología , Proliferación Celular/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Células MCF-7 , Ratones , MicroARNs/biosíntesis , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas p21 Activadas/metabolismo
16.
Oncotarget ; 7(2): 1288-99, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26595523

RESUMEN

MicroRNAs have been integrated into tumorigenic programs as either oncogenes or tumor suppressor genes. The miR-630 was reported to be deregulated and involved in tumor progression of several human malignancies. However, its expression regulation shows diversity in different kinds of cancers and its potential roles remain greatly elusive. Herein, we demonstrate that miR-630 is significantly suppressed in human breast cancer specimens, as well as in various breast cancer cell lines. In aggressive MDA-MB-231-luc and BT549 breast cancer cells, ectopic expression of miR-630 strongly inhibits cell motility and invasive capacity in vitro. Moreover, lentivirus delivered miR-630 bestows MDA-MB-231-luc cells with the ability to suppress cell colony formation in vitro and pulmonary metastasis in vivo. Further studies identify metadherin (MTDH) as a direct target gene of miR-630. Functional studies shows that MTDH contributes to miR-630-endowed effects including cell migration and invasion as well as colony formation in vitro. Taken together, these findings highlight an important role for miR-630 in the regulation of metastatic potential of breast cancer and suggest a potential application of miR-630 in breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Moléculas de Adhesión Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Proteínas de la Membrana , Ratones Endogámicos NOD , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo
17.
Biol. Res ; 53: 43, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1131887

RESUMEN

BACKGROUND: Breast cancer, the most common cancer in women worldwide, causes the vast majority of cancer-related deaths. Undoubtedly, tumor metastasis and recurrence are responsible for more than 90 percent of these deaths. MicroRNAs are endogenous noncoding RNAs that have been integrated into almost all the physiological and pathological processes, including metastasis. In the present study, the role of miR-128 in breast cancer was investigated. RESULTS: Compared to the corresponding adjacent normal tissue, the expression of miR-128 was significantly suppressed in human breast cancer specimens. More importantly, its expression level was reversely correlated to histological grade of the cancer. Ectopic expression of miR-128 in the aggressive breast cancer cell line MDA-MB-231 could inhibit cell motility and invasive capacity remarkably. Afterwards, Metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric that implicated in various aspects of cancer progression and metastasis, was further identified as a direct target gene of miR-128 and its expression level was up-regulated in clinical samples as expected. Moreover, knockdown of MTDH in MDA-MB-231 cells obviously impaired the migration and invasion capabilities, whereas re-expression of MTDH abrogated the suppressive effect caused by miR-128. CONCLUSIONS: Overall, these findings demonstrate that miR-128 could serve as a novel biomarker for breast cancer metastasis and a potent target for treatment in the future.


Asunto(s)
Humanos , Femenino , Neoplasias de la Mama/genética , MicroARNs/fisiología , MicroARNs/genética , Invasividad Neoplásica/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ARN , Línea Celular Tumoral , Proteínas de la Membrana , Recurrencia Local de Neoplasia
18.
FEBS Lett ; 585(9): 1363-7, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21510944

RESUMEN

MicroRNAs are widely dysregulated in various cancers and integrated into tumorigenic programs as either oncogenes or tumor suppressor genes. Here, we show that miR-26b, which is down-regulated in human breast cancer specimens and cell lines, impairs viability and triggers apoptosis of human breast cancer MCF7 cells. SLC7A11 is identified as a direct target of miR-26b and its expression is remarkably increased in both breast cancer cell lines and clinical samples. Furthermore, SLC7A11 silence mimics miR-26b-aroused viability impairment and apoptosis in MCF7 cells. Our studies reveal a protective role of miR-26b in the molecular etiology of human breast cancer by promoting apoptosis.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Apoptosis/genética , Neoplasias de la Mama/genética , MicroARNs/genética , Adulto , Anciano , Sistema de Transporte de Aminoácidos y+/metabolismo , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
19.
Biochem Biophys Res Commun ; 347(1): 12-21, 2006 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16814746

RESUMEN

Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O(2), bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G(2)/S/M phase cells increased evidently under 8% O(2) condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O(2) condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl(2)) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Hipoxia de la Célula/fisiología , Oxígeno/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Células del Estroma/citología , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA