Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(17): e113415, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37485728

RESUMEN

The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones ß-estradiol 17-(ß-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Estradiol , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Estradiol/farmacología , Estradiol/metabolismo , Mutagénesis Sitio-Dirigida
2.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457518

RESUMEN

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Asunto(s)
Cianobacterias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Cianobacterias/metabolismo , Adenosina Trifosfato/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(4): e2213727120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656854

RESUMEN

The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.


Asunto(s)
Myoviridae , Ensamble de Virus , Bacteriófago T4/química , Cápside , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Myoviridae/química
4.
Proc Natl Acad Sci U S A ; 119(14): e2118656119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349344

RESUMEN

SignificanceATP8B1 is a P4 ATPase that maintains membrane asymmetry by transporting phospholipids across the cell membrane. Disturbance of lipid asymmetry will lead to the imbalance of the cell membrane and eventually, cell death. Thus, defects in ATP8B1 are usually associated with severe human diseases, such as intrahepatic cholestasis. The present structures of ATP8B1 complexed with its auxiliary noncatalytic partners CDC50A and CDC50B reveal an autoinhibited state of ATP8B1 that could be released upon substrate binding. Moreover, release of this autoinhibition could be facilitated by the bile acids, which are key factors that alter the membrane asymmetry of hepatocytes. This enabled us to figure out a feedback loop of bile acids and lipids across the cell membrane.


Asunto(s)
Adenosina Trifosfatasas , Colestasis Intrahepática , Adenosina Trifosfatasas/metabolismo , Ácidos y Sales Biliares/metabolismo , Membrana Celular/metabolismo , Colestasis Intrahepática/metabolismo , Humanos , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo
5.
Proteins ; 90(10): 1749-1765, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35924777

RESUMEN

ATP-binding cassette (ABC) superfamily is one of the largest groups of primary active transporters that could be found in all kingdoms of life from bacteria to humans. In humans, ABC transporters can selectively transport a wide spectrum of substrates across membranes, thus playing a pivotal role in multiple physiological processes. In addition, due to the ability of exporting clinic therapeutics, some ABC transporters were originally termed multidrug resistance proteins. Increasing investigations of human ABC transporters in recent years have provided abundant information for elucidating their structural features, based on the structures at distinct states in a transport cycle. This review focuses on the recent progress in human ABC structural analyses, substrate binding specificities, and translocation mechanisms. We dedicate to summarize the common features of human ABC transporters in different subfamilies, and to discuss the possibility to apply the fast-developing techniques, such as cryogenic electron microscopy, and artificial intelligence-assisted structure prediction, for future studies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Plásticos , Subfamilia B de Transportador de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato , Inteligencia Artificial , Humanos , Plásticos/metabolismo
6.
Environ Microbiol ; 24(7): 3037-3050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35590460

RESUMEN

To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modelled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool.


Asunto(s)
Bacteriófagos , Prochlorococcus , Synechococcus , Bacteriófagos/genética , Bacteriófagos/metabolismo , Myoviridae , Proteínas de Unión a Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Prochlorococcus/metabolismo , Synechococcus/metabolismo
7.
Microbiology (Reading) ; 168(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35467499

RESUMEN

Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a ΔlytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.


Asunto(s)
Peptidoglicano , Streptococcus pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacología , Pared Celular/metabolismo , Diamida/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo , Streptococcus pneumoniae/metabolismo
8.
J Virol ; 95(24): e0135621, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34549983

RESUMEN

A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a noncovalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo 3-fold axis combined with the complementarity in shape and electrostatic potential around the 2-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O2 generation, and CO2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.


Asunto(s)
Anabaena/virología , Bacteriófagos/química , Cápside/química , Microscopía por Crioelectrón/métodos , Bacteriófagos/clasificación , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Agua Dulce/microbiología , Modelos Moleculares , Filogenia
9.
Proc Natl Acad Sci U S A ; 115(2): 403-408, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279392

RESUMEN

The coordination of carbon and nitrogen metabolism is essential for bacteria to adapt to nutritional variations in the environment, but the underlying mechanism remains poorly understood. In autotrophic cyanobacteria, high CO2 levels favor the carboxylase activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO) to produce 3-phosphoglycerate, whereas low CO2 levels promote the oxygenase activity of RuBisCO, leading to 2-phosphoglycolate (2-PG) production. Thus, the 2-PG level is reversely correlated with that of 2-oxoglutarate (2-OG), which accumulates under a high carbon/nitrogen ratio and acts as a nitrogen-starvation signal. The LysR-type transcriptional repressor NAD(P)H dehydrogenase regulator (NdhR) controls the expression of genes related to carbon metabolism. Based on genetic and biochemical studies, we report here that 2-PG is an inducer of NdhR, while 2-OG is a corepressor, as found previously. Furthermore, structural analyses indicate that binding of 2-OG at the interface between the two regulatory domains (RD) allows the NdhR tetramer to adopt a repressor conformation, whereas 2-PG binding to an intradomain cleft of each RD triggers drastic conformational changes leading to the dissociation of NdhR from its target DNA. We further confirmed the effect of 2-PG or 2-OG levels on the transcription of the NdhR regulon. Together with previous findings, we propose that NdhR can sense 2-OG from the Krebs cycle and 2-PG from photorespiration, two key metabolites that function together as indicators of intracellular carbon/nitrogen status, thus representing a fine sensor for the coordination of carbon and nitrogen metabolism in cyanobacteria.


Asunto(s)
Carbono/metabolismo , Cianobacterias/metabolismo , Genes Reguladores , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Nitrógeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Cianobacterias/genética , Regulación Bacteriana de la Expresión Génica , Glicolatos/metabolismo , Ácidos Cetoglutáricos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Transducción de Señal
10.
Proteins ; 88(9): 1226-1232, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32337767

RESUMEN

Cyanophages, widespread in aquatic systems, are a class of viruses that specifically infect cyanobacteria. Though they play important roles in modulating the homeostasis of cyanobacterial populations, little is known about the freshwater cyanophages, especially those hypothetical proteins of unknown function. Mic1 is a freshwater siphocyanophage isolated from the Lake Chaohu. It encodes three hypothetical proteins Gp65, Gp66, and Gp72, which share an identity of 61.6% to 83%. However, we find these three homologous proteins differ from each other in oligomeric state. Moreover, we solve the crystal structure of Gp72 at 2.3 Å, which represents a novel fold in the α + ß class. Structural analyses combined with redox assays enable us to propose a model of disulfide bond mediated oligomerization for Gp72. Altogether, these findings provide structural and biochemical basis for further investigations on the freshwater cyanophage Mic1.


Asunto(s)
Bacteriófagos/química , Cianobacterias/virología , Disulfuros/química , Proteínas Virales/química , Secuencia de Aminoácidos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Agua Dulce/microbiología , Agua Dulce/virología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Biochem Biophys Res Commun ; 524(3): 784-790, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32037091

RESUMEN

The accessory sec system consisting of seven conserved components is commonly distributed among pathogenic Gram-positive bacteria for the secretion of serine-rich-repeat proteins (SRRPs). Asp1/2/3 protein complex in the system is responsible for both the O-acetylation of GlcNAc and delivering SRRPs to SecA2. However, the molecular mechanism of how Asp1/2/3 transport SRRPs remains unknown. Here, we report the complex structure of Asp1/2/3 from Streptococcus pneumoniae at 2.9 Å. Further functional assays indicated that Asp1/2/3 can stimulate the ATPase activity of SecA2. In addition, the deletion of asp1/2/3 gene resulted in the accumulation of a secreted version of PsrP with an altered glycoform in protoplast fraction of the mutant cell, which suggested the modification/transport coupling of the substrate. Altogether, these findings not only provide structural basis for further investigations on the transport process of SRRPs, but also uncover the indispensable role of Asp1/2/3 in the accessory sec system.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Secuencias Repetitivas de Aminoácido , Serina/metabolismo , Streptococcus pneumoniae/metabolismo , Secuencia de Aminoácidos , Glicosilación , Transporte de Proteínas , Relación Estructura-Actividad
12.
BMC Microbiol ; 20(1): 110, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375647

RESUMEN

BACKGROUND: Bacterial gas vesicles, composed of two major gas vesicle proteins and filled with gas, are a unique class of intracellular bubble-like nanostructures. They provide buoyancy for cells, and thus play an essential role in the growth and survival of aquatic and soil microbes. Moreover, the gas vesicle could be applied to multimodal and noninvasive biological imaging as a potential nanoscale contrast agent. To date, cylinder-shaped gas vesicles have been found in several strains of cyanobacteria. However, whether the functional gas vesicles could be produced in the model filamentous cyanobacteria Anabaena sp. PCC 7120 remains controversial. RESULTS: In this study, we found that an intact gvp gene cluster indeed exists in the model filamentous cyanobacteria Anabaena sp. PCC 7120. Real-time PCR assays showed that the gvpA gene is constitutively transcribed in vivo, and its expression level is upregulated at low light intensity and/or high growth temperature. Functional expression of this intact gvp gene cluster enables the recombinant Escherichia coli to gain the capability of floatation in the liquid medium, thanks to the assembly of irregular gas vesicles. Furthermore, crystal structure of GvpF in combination with enzymatic activity assays of GvpN suggested that these two auxiliary proteins of gas vesicle are structurally and enzymatically conserved, respectively. CONCLUSIONS: Our findings show that the laboratory strain of model filamentous cyanobacteria Anabaena sp. PCC 7120 possesses an intact but partially degenerated gas vesicle gene cluster, indicating that the natural isolate might be able to produce gas vesicles under some given environmental stimuli for better floatation.


Asunto(s)
Anabaena/enzimología , Proteínas/genética , Proteínas/metabolismo , Análisis de Secuencia de ADN/métodos , Anabaena/genética , Cristalografía por Rayos X , Medios de Cultivo/química , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Familia de Multigenes , Conformación Proteica , Proteínas/química
13.
Biochem J ; 476(10): 1433-1444, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31036719

RESUMEN

The tubulin-like GTPase protein FtsZ, which forms a discontinuous cytokinetic ring at mid-cell, is a central player to recruit the division machinery to orchestrate cell division. To guarantee the production of two identical daughter cells, the assembly of FtsZ, namely Z-ring, and its precise positioning should be finely regulated. In Streptococcus pneumoniae, the positioning of Z-ring at the division site is mediated by a bitopic membrane protein MapZ (mid-cell-anchored protein Z) through direct interactions between the intracellular domain (termed MapZ-N (the intracellular domain of MapZ)) and FtsZ. Using nuclear magnetic resonance titration experiments, we clearly assigned the key residues involved in the interactions. In the presence of MapZ-N, FtsZ gains a shortened activation delay, a lower critical concentration for polymerization and a higher cooperativity towards GTP hydrolysis. On the other hand, MapZ-N antagonizes the lateral interactions of single-stranded filaments of FtsZ, thus slows down the formation of highly bundled FtsZ polymers and eventually maintains FtsZ at a dynamic state. Altogether, we conclude that MapZ is not only an accelerator to trigger the polymerization of FtsZ, but also a brake to tune the velocity to form the end-product, FtsZ bundles. These findings suggest that MapZ is a multi-functional regulator towards FtsZ that controls both the precise positioning and proper timing of FtsZ polymerization.


Asunto(s)
Proteínas Bacterianas , Proteínas del Citoesqueleto , Guanosina Trifosfato , Multimerización de Proteína , Streptococcus pneumoniae , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Dominios Proteicos , Streptococcus pneumoniae/química , Streptococcus pneumoniae/metabolismo
14.
Biochem Biophys Res Commun ; 515(3): 510-515, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31171360

RESUMEN

Carboxysome, encapsulating an enzymatic core within an icosahedral-shaped semipermeable protein shell, could enhance CO2 fixation under low CO2 conditions in the environment. The shell of Halothiobacillus neapolitanus α-carboxysome possesses two 38% sequence-identical pentameric proteins, namely CsoS4A and CsoS4B. However, the functions of two paralogous pentameric proteins in α-carboxysome assembly remain unknown. Here we report the crystal structure of CsoS4B at 2.15 Šresolution. It displays as a stable pentamer, each subunit of which consists of a ß-barrel core domain, in addition to an insertion of helix α1 that forms the central pore. Structural comparisons and multiple-sequence alignment strongly indicate that CsoS4A and CsoS4B differ from each other in interacting with various components of α-carboxysome, despite they share a similar overall structure. These findings provide the structural basis for further investigations on the self-assembly process of carboxysome.


Asunto(s)
Proteínas Bacterianas/química , Halothiobacillus/química , Multimerización de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Electricidad Estática , Homología Estructural de Proteína
15.
Biochem Biophys Res Commun ; 514(4): 1108-1114, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31101340

RESUMEN

L-amino acids represent the most common amino acid form, most notably as protein residues, whereas D-amino acids, despite their rare occurrence, play significant roles in many biological processes. Amino acid racemases are enzymes that catalyze the interconversion of L- and/or D-amino acids. McyF is a pyridoxal 5'-phosphate (PLP) independent amino acid racemase that produces the substrate D-aspartate for the biosynthesis of microcystin in the cyanobacterium Microcystis aeruginosa PCC7806. Here we report the crystal structures of McyF in complex with citrate, L-Asp and D-Asp at 2.35, 2.63 and 2.80 Å, respectively. Structural analyses indicate that McyF and homologs possess highly conserved residues involved in substrate binding and catalysis. In addition, residues Cys87 and Cys195 were clearly assigned to the key catalytic residues of "two bases" that deprotonate D-Asp and L-Asp in a reaction independent of PLP. Further site-directed mutagenesis combined with enzymatic assays revealed that Glu197 also participates in the catalytic reaction. In addition, activity assays proved that McyF could also catalyze the interconversion of L-MeAsp between D-MeAsp, the precursor of another microcystin isoform. These findings provide structural insights into the catalytic mechanism of aspartate racemase and microcystin biosynthesis.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Microcystis/enzimología , Biocatálisis , Cristalografía por Rayos X , Modelos Moleculares , Especificidad por Sustrato
16.
Biochem J ; 475(7): 1295-1308, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29555845

RESUMEN

The second messenger c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate] plays a key role in bacterial growth, survival and pathogenesis, and thus its intracellular homeostasis should be finely maintained. Mycobacterium smegmatis encodes a GAF (mammalian cGMP-regulated phosphodiesterases, Anabaenaadenylyl cyclases and Escherichia coli transcription activator FhlA) domain containing bifunctional enzyme DcpA (diguanylate cyclase and phosphodiesterase A) that catalyzes the synthesis and hydrolysis of c-di-GMP. Here, we found that M. smegmatis DcpA catalyzes the hydrolysis of c-di-GMP at a higher velocity, compared with synthetic activity, resulting in a sum reaction from the ultimate substrate GTP to the final product pGpG [5'-phosphoguanylyl-(3'-5')-guanosine]. Fusion with the N-terminal GAF domain enables the GGDEF (Gly-Gly-Asp-Glu-Phe) domain of DcpA to dimerize and accordingly gain synthetic activity. Screening of putative metabolites revealed that GDP is the ligand of the GAF domain. Binding of GDP to the GAF domain down-regulates synthetic activity, but up-regulates hydrolytic activity, which, in consequence, might enable a timely response to the transient accumulation of c-di-GMP at the stationary phase or under stresses. Combined with the crystal structure of the EAL (Glu-Ala-Leu) domain and the small-angle X-ray scattering data, we propose a putative regulatory model of the GAF domain finely tuned by the intracellular GTP/GDP ratio. These findings help us to better understand the concerted control of the synthesis and hydrolysis of c-di-GMP in M. smegmatis in various microenvironments.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Guanosina Difosfato/metabolismo , Mycobacterium smegmatis/metabolismo , 3',5'-GMP Cíclico Fosfodiesterasas/química , Secuencia de Aminoácidos , GMP Cíclico/metabolismo , Hidrólisis , Mycobacterium smegmatis/crecimiento & desarrollo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Homología de Secuencia
17.
Biochemistry ; 57(7): 1087-1095, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29376320

RESUMEN

Naturally occurring interruptions in nonfibrillar collagen play key roles in molecular flexibility, collagen degradation, and ligand binding. The structural feature of the interruption sequences and the molecular basis for their functions have not been well studied. Here, we focused on a G5G type natural interruption sequence G-POALO-G from human type XIX collagen, a homotrimer collagen, as this sequence possesses distinct properties compared with those of a pathological similar Gly mutation sequence in collagen mimic peptides. We determined the crystal structures of the host-guest peptide (GPO)3-GPOALO-(GPO)4 to 1.03 Å resolution in two crystal forms. In these structures, the interruption zone brings localized disruptions to the triple helix and introduces a light 6-8° bend with the same directional preference to the whole molecule, which may correspond structurally to the first physiological kink site in type XIX collagen. Furthermore, at the G5G interruption site, the presence of Ala and Leu residues, both with free N-H groups, allows the formation of more direct and water-mediated interchain hydrogen bonds than in the related Gly → Ala structure. These could partly explain the difference in thermal stability between the different interruptions. In addition, our structures provide a detailed view of the dynamic property of such an interrupted zone with respect to hydrogen bonding topology, torsion angles, and helical parameters. Our results, for the first time, also identified the binding of zinc to the end of the triple helix. These findings will shed light on how the interruption sequence influences the conformation of the collagen molecule and provide a structural basis for further functional studies.


Asunto(s)
Colágeno/química , Péptidos/química , Sitios de Unión , Colágeno/metabolismo , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Péptidos/metabolismo , Conformación Proteica , Conformación Proteica en Hélice alfa , Zinc/metabolismo
18.
J Biol Chem ; 292(15): 6213-6224, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28246170

RESUMEN

Protein O-glycosylation is an important post-translational modification in all organisms, but deciphering the specific functions of these glycans is difficult due to their structural complexity. Understanding the glycosylation of mucin-like proteins presents a particular challenge as they are modified numerous times with both the enzymes involved and the glycosylation patterns being poorly understood. Here we systematically explored the O-glycosylation pathway of a mucin-like serine-rich repeat protein PsrP from the human pathogen Streptococcus pneumoniae TIGR4. Previous works have assigned the function of 3 of the 10 glycosyltransferases thought to modify PsrP, GtfA/B, and Gtf3 as catalyzing the first two reactions to form a unified disaccharide core structure. We now use in vivo and in vitro glycosylation assays combined with hydrolytic activity assays to identify the glycosyltransferases capable of decorating this core structure in the third and fourth steps of glycosylation. Specifically, the full-length GlyE and GlyG proteins and the GlyD DUF1792 domain participate in both steps, whereas full-length GlyA and the GlyD GT8 domain catalyze only the fourth step. Incorporation of different sugars to the disaccharide core structure at multiple sites along the serine-rich repeats results in a highly polymorphic product. Furthermore, crystal structures of apo- and UDP-complexed GlyE combined with structural analyses reveal a novel Rossmann-fold "add-on" domain that we speculate to function as a universal module shared by GlyD, GlyE, and GlyA to forward the peptide acceptor from one enzyme to another. These findings define the complete glycosylation pathway of a bacterial glycoprotein and offer a testable hypothesis of how glycosyltransferase coordination facilitates glycan assembly.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Glicosiltransferasas/metabolismo , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/genética , Glicoproteínas/genética , Glicosilación , Glicosiltransferasas/genética , Humanos , Dominios Proteicos , Streptococcus pneumoniae/genética
19.
EMBO Rep ; 17(2): 235-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26711430

RESUMEN

Various aerolysin-like pore-forming proteins have been identified from bacteria to vertebrates. However, the mechanism of receptor recognition and/or pore formation of the eukaryotic members remains unknown. Here, we present the first crystal and electron microscopy structures of a vertebrate aerolysin-like protein from Danio rerio, termed Dln1, before and after pore formation. Each subunit of Dln1 dimer comprises a ß-prism lectin module followed by an aerolysin module. Specific binding of the lectin module toward high-mannose glycans triggers drastic conformational changes of the aerolysin module in a pH-dependent manner, ultimately resulting in the formation of a membrane-bound octameric pore. Structural analyses combined with computational simulations and biochemical assays suggest a pore-forming process with an activation mechanism distinct from the previously characterized bacterial members. Moreover, Dln1 and its homologs are ubiquitously distributed in bony fishes and lamprey, suggesting a novel fish-specific defense molecule.


Asunto(s)
Toxinas Bacterianas/química , Simulación de Dinámica Molecular , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas de Pez Cebra/química , Secuencia de Aminoácidos , Animales , Toxinas Bacterianas/metabolismo , Lectinas/química , Lectinas/metabolismo , Mananos/química , Mananos/metabolismo , Datos de Secuencia Molecular , Proteínas Citotóxicas Formadoras de Poros/genética , Unión Proteica , Estructura Terciaria de Proteína , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Nucleic Acids Res ; 44(8): 3936-45, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26939889

RESUMEN

Despite over 3300 protein-DNA complex structures have been reported in the past decades, there remain some unknown recognition patterns between protein and target DNA. The silkgland-specific transcription factor FMBP-1 from the silkworm Bombyx mori contains a unique DNA-binding domain of four tandem STPRs, namely the score and three amino acid peptide repeats. Here we report three structures of this STPR domain (termed BmSTPR) in complex with DNA of various lengths. In the presence of target DNA, BmSTPR adopts a zig-zag structure of three or four tandem α-helices that run along the major groove of DNA. Structural analyses combined with binding assays indicate BmSTPR prefers the AT-rich sequences, with each α-helix covering a DNA sequence of 4 bp. The successive AT-rich DNAs adopt a wider major groove, which is in complementary in shape and size to the tandem α-helices of BmSTPR. Substitutions of DNA sequences and affinity comparison further prove that BmSTPR recognizes the major groove mainly via shape readout. Multiple-sequence alignment suggests this unique DNA-binding pattern should be highly conserved for the STPR domain containing proteins which are widespread in animals. Together, our findings provide structural insights into the specific interactions between a novel DNA-binding protein and a unique deformed B-DNA.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Proteínas de Insectos/química , Factores de Transcripción/química , Animales , Sitios de Unión , Bombyx , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Insectos/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA