Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.861
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 21(10): 1219-1231, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778760

RESUMEN

Chronic inflammation is a common feature of obesity, with elevated cytokines such as interleukin-1 (IL-1) in the circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2 Myddosome to mitochondria outer membranes via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membranes, to suppress oxidative phosphorylation and fatty acid oxidation, thereby attenuating energy expenditure. Adipocyte-specific MyD88 or IRAK2 deficiency reduced high-fat-diet-induced weight gain, increased energy expenditure and ameliorated insulin resistance, associated with a smaller adipocyte size and increased cristae formation. IRAK2 kinase inactivation also reduced high-fat diet-induced metabolic diseases. Mechanistically, IRAK2 suppressed respiratory super-complex formation via interaction with PHB1 and OPA1 upon stimulation of IL-1. Taken together, our results suggest that the IRAK2 Myddosome functions as a critical link between inflammation and metabolism, representing a novel therapeutic target for patients with obesity.


Asunto(s)
Adipocitos/inmunología , Inflamación/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1/metabolismo , Membranas Mitocondriales/metabolismo , Obesidad/inmunología , Adipocitos/patología , Animales , Células Cultivadas , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Masculino , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosforilación Oxidativa , Prohibitinas , Transporte de Proteínas , Receptores de Interleucina-1/metabolismo , Transducción de Señal
2.
Nat Immunol ; 19(4): 354-365, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29563620

RESUMEN

Mechanisms that degrade inflammatory mRNAs are well known; however, stabilizing mechanisms are poorly understood. Here, we show that Act1, an interleukin-17 (IL-17)-receptor-complex adaptor, binds and stabilizes mRNAs encoding key inflammatory proteins. The Act1 SEFIR domain binds a stem-loop structure, the SEFIR-binding element (SBE), in the 3' untranslated region (UTR) of Cxcl1 mRNA, encoding an inflammatory chemokine. mRNA-bound Act1 directs formation of three compartmentally distinct RNA-protein complexes (RNPs) that regulate three disparate events in inflammatory-mRNA metabolism: preventing mRNA decay in the nucleus, inhibiting mRNA decapping in P bodies and promoting translation. SBE RNA aptamers decreased IL-17-mediated mRNA stabilization in vitro, IL-17-induced skin inflammation and airway inflammation in a mouse asthma model, thus providing a therapeutic strategy for autoimmune diseases. These results reveal a network in which Act1 assembles RNPs on the 3' UTRs of select mRNAs and consequently controls receptor-mediated mRNA stabilization and translation during inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inflamación/inmunología , Interleucina-17/metabolismo , Estabilidad del ARN/fisiología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Regulación de la Expresión Génica/inmunología , Inflamación/metabolismo , Interleucina-17/inmunología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Receptores de Interleucina-17/metabolismo
3.
Nature ; 622(7982): 376-382, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696289

RESUMEN

Nirmatrelvir is a specific antiviral drug that targets the main protease (Mpro) of SARS-CoV-2 and has been approved to treat COVID-191,2. As an RNA virus characterized by high mutation rates, whether SARS-CoV-2 will develop resistance to nirmatrelvir is a question of concern. Our previous studies have shown that several mutational pathways confer resistance to nirmatrelvir, but some result in a loss of viral replicative fitness, which is then compensated for by additional alterations3. The molecular mechanisms for this observed resistance are unknown. Here we combined biochemical and structural methods to demonstrate that alterations at the substrate-binding pocket of Mpro can allow SARS-CoV-2 to develop resistance to nirmatrelvir in two distinct ways. Comprehensive studies of the structures of 14 Mpro mutants in complex with drugs or substrate revealed that alterations at the S1 and S4 subsites substantially decreased the level of inhibitor binding, whereas alterations at the S2 and S4' subsites unexpectedly increased protease activity. Both mechanisms contributed to nirmatrelvir resistance, with the latter compensating for the loss in enzymatic activity of the former, which in turn accounted for the restoration of viral replicative fitness, as observed previously3. Such a profile was also observed for ensitrelvir, another clinically relevant Mpro inhibitor. These results shed light on the mechanisms by which SARS-CoV-2 evolves to develop resistance to the current generation of protease inhibitors and provide the basis for the design of next-generation Mpro inhibitors.


Asunto(s)
Antivirales , Farmacorresistencia Viral , SARS-CoV-2 , Humanos , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , COVID-19/virología , Lactamas , Leucina , Nitrilos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Mutación , Especificidad por Sustrato , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos , Diseño de Fármacos , Prolina
4.
Nat Immunol ; 16(6): 642-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915733

RESUMEN

Fungal infection stimulates the canonical C-type lectin receptor (CLR) signaling pathway via activation of the tyrosine kinase Syk. Here we identify a crucial role for the tyrosine phosphatase SHP-2 in mediating CLR-induced activation of Syk. Ablation of the gene encoding SHP-2 (Ptpn11; called 'Shp-2' here) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated the expression of genes encoding pro-inflammatory molecules following fungal stimulation. Mechanistically, SHP-2 operated as a scaffold, facilitating the recruitment of Syk to the CLR dectin-1 or the adaptor FcRγ, through its N-SH2 domain and a previously unrecognized carboxy-terminal immunoreceptor tyrosine-based activation motif (ITAM). We found that DC-derived SHP-2 was crucial for the induction of interleukin 1ß (IL-1ß), IL-6 and IL-23 and anti-fungal responses of the TH17 subset of helper T cells in controlling infection with Candida albicans. Together our data reveal a mechanism by which SHP-2 mediates the activation of Syk in response to fungal infection.


Asunto(s)
Candidiasis/inmunología , Células Dendríticas/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Células Th17/inmunología , Secuencias de Aminoácidos/genética , Animales , Antígenos Fúngicos/inmunología , Células Cultivadas , Citocinas/metabolismo , Activación Enzimática , Mediadores de Inflamación/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Receptores de IgE/genética , Receptores de IgE/metabolismo , Transducción de Señal , Quinasa Syk
5.
Nature ; 592(7856): 712-716, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33911276

RESUMEN

Complex concentrated solutions of multiple principal elements are being widely investigated as high- or medium-entropy alloys (HEAs or MEAs)1-11, often assuming that these materials have the high configurational entropy of an ideal solution. However, enthalpic interactions among constituent elements are also expected at normal temperatures, resulting in various degrees of local chemical order12-22. Of the local chemical orders that can develop, chemical short-range order (CSRO) is arguably the most difficult to decipher and firm evidence of CSRO in these materials has been missing thus far16,22. Here we discover that, using an appropriate zone axis, micro/nanobeam diffraction, together with atomic-resolution imaging and chemical mapping via transmission electron microscopy, can explicitly reveal CSRO in a face-centred-cubic VCoNi concentrated solution. Our complementary suite of tools provides concrete information about the degree/extent of CSRO, atomic packing configuration and preferential occupancy of neighbouring lattice planes/sites by chemical species. Modelling of the CSRO order parameters and pair correlations over the nearest atomic shells indicates that the CSRO originates from the nearest-neighbour preference towards unlike (V-Co and V-Ni) pairs and avoidance of V-V pairs. Our findings offer a way of identifying CSRO in concentrated solution alloys. We also use atomic strain mapping to demonstrate the dislocation interactions enhanced by the CSROs, clarifying the effects of these CSROs on plasticity mechanisms and mechanical properties upon deformation.

6.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857391

RESUMEN

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Asunto(s)
Biomasa , Ecosistema , Hielos Perennes , Tibet , Humedales , Plantas/metabolismo , Cambio Climático , Temperatura , Ciclo del Carbono , Desarrollo de la Planta/fisiología , Suelo/química , Pradera
7.
Circulation ; 149(25): 2002-2020, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38885303

RESUMEN

Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.


Asunto(s)
Infarto del Miocardio , Humanos , Infarto del Miocardio/terapia , Infarto del Miocardio/fisiopatología , Animales , Andamios del Tejido
8.
N Engl J Med ; 387(9): 779-789, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36053504

RESUMEN

BACKGROUND: In patients with coronary artery disease who are being evaluated for percutaneous coronary intervention (PCI), procedures can be guided by fractional flow reserve (FFR) or intravascular ultrasonography (IVUS) for decision making regarding revascularization and stent implantation. However, the differences in clinical outcomes when only one method is used for both purposes are unclear. METHODS: We randomly assigned 1682 patients who were being evaluated for PCI for the treatment of intermediate stenosis (40 to 70% occlusion by visual estimation on coronary angiography) in a 1:1 ratio to undergo either an FFR-guided or IVUS-guided procedure. FFR or IVUS was to be used to determine whether to perform PCI and to assess PCI success. In the FFR group, PCI was to be performed if the FFR was 0.80 or less. In the IVUS group, the criteria for PCI were a minimal lumen area measuring either 3 mm2 or less or measuring 3 to 4 mm2 with a plaque burden of more than 70%. The primary outcome was a composite of death, myocardial infarction, or revascularization at 24 months after randomization. We tested the noninferiority of the FFR group as compared with the IVUS group (noninferiority margin, 2.5 percentage points). RESULTS: The frequency of PCI was 44.4% among patients in the FFR group and 65.3% among those in the IVUS group. At 24 months, a primary-outcome event had occurred in 8.1% of the patients in the FFR group and in 8.5% of those in the IVUS group (absolute difference, -0.4 percentage points; upper boundary of the one-sided 97.5% confidence interval, 2.2 percentage points; P = 0.01 for noninferiority). Patient-reported outcomes as reported on the Seattle Angina Questionnaire were similar in the two groups. CONCLUSIONS: In patients with intermediate stenosis who were being evaluated for PCI, FFR guidance was noninferior to IVUS guidance with respect to the composite primary outcome of death, myocardial infarction, or revascularization at 24 months. (Funded by Boston Scientific; FLAVOUR ClinicalTrials.gov number, NCT02673424.).


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Infarto del Miocardio , Intervención Coronaria Percutánea , Ultrasonografía Intervencional , Constricción Patológica , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/terapia , Humanos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Intervención Coronaria Percutánea/métodos , Resultado del Tratamiento , Ultrasonografía Intervencional/métodos
9.
PLoS Pathog ; 19(3): e1011242, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930687

RESUMEN

Schistosomiasis is a zoonotic parasitic disease. Schistosoma japonicum eggs deposited in the liver tissue induce egg granuloma formation and liver fibrosis, seriously threatening human health. Natural killer (NK) cells kill activated hepatic stellate cells (HSCs) or induce HSC apoptosis and inhibit the progression of liver fibrosis. However, the function of NK cells in liver fibrosis caused by S. japonicum infection is significantly inhibited. The mechanism of this inhibition remains unclear. Twenty mice were percutaneously infected with S. japonicum cercariae. Before infection and 2, 4, 6, and 8 weeks after infection, five mice were euthanized and dissected at each time point. Hepatic NK cells were isolated and transcriptome sequenced. The sequencing results showed that Tigit expression was high at 4-6 weeks post infection. This phenomenon was verified by reverse transcription quantitative PCR (RT-qPCR) and flow cytometry. NK cells derived from Tigit-/- and wild-type (WT) mice were co-cultured with HSCs. It was found that Tigit-/- NK cells induced apoptosis in a higher proportion of HSCs than WT NK cells. Schistosomiasis infection models of Tigit-/- and WT mice were established. The proportion and killing activity of hepatic NK cells were significantly higher in Tigit-/- mice than in WT mice. The degree of liver fibrosis in Tigit-/- mice was significantly lower than that in WT mice. NK cells were isolated from Tigit-/- and WT mice and injected via the tail vein into WT mice infected with S. japonicum. The degree of liver fibrosis in mice that received NK cell infusion reduced significantly, but there was no significant difference between mice that received NK cells from Tigit-/- and WT mice, respectively. Our findings indicate that Tigit knockout enhanced the function of NK cells and reduced the degree of liver fibrosis in schistosomiasis, thus providing a novel strategy for treating hepatic fibrosis induced by schistosomiasis.


Asunto(s)
Receptores Inmunológicos , Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Animales , Ratones , Células Asesinas Naturales/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Esquistosomiasis/patología
10.
Plant Cell ; 34(5): 1912-1932, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35171272

RESUMEN

Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza rufipogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.


Asunto(s)
Endospermo , Oryza , Grano Comestible/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Oryza/genética , Oryza/metabolismo , Oxidación-Reducción
11.
Circ Res ; 132(4): 465-480, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36722348

RESUMEN

BACKGROUND: Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. METHODS: The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. RESULTS: We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. CONCLUSIONS: We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Ratones , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Ubiquitina Tiolesterasa/genética
12.
Crit Rev Immunol ; 44(6): 1-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848289

RESUMEN

Systemic immune-inflammation index (SII) and T cell subsets show involvement in mortality risk in septic patients, and we explored their predictive value in sepsis. Subjects were categorized into the Sepsis (SP)/Septic Shock (SSP)/Septic Shock (SPS) groups. T cell subsets [T-helper (Th)1, Th2, regulatory T cells (Treg), Th17]/platelets (PLT)/neutrophils (NEU)/lymphocytes (LYM)/C-reactive protein (CRP)/procalcitonin (PCT)/interleukin (IL)-4/IL-10/fibrinogen (FIB) were measured by an automatic blood biochemical analyzer/flow cytometry/Countess II FL automatic blood cell analyzer, with SII calculated. The correlations between SII/T cell subsets with Acute Physiology and Chronic Health Evaluation (APACH) II/Sequential Organ Failure Assessment (SOFA) scores and the predictive value of SII/Th1/Th2 for septic diagnosis/prognosis were analyzed using Spearman/ROC curve/Kaplan-Meier. The three groups varied in PLT/NEU/LYM/CRP/PCT/IL-4/IL-10/FIB levels and APACH II/SOFA scores. Compared with the SP group, the other two groups showed elevated APACH II/SOFA scores and SII/Th1/Th2/Th17/Treg levels. SII/Th1/Th2 levels significantly positively correlated with APACH II/SOFA scores. SII/Th1/Th2 levels had high predictive value for septic diagnosis/prognosis, with their combination exhibiting higher predictive value. Septic patients with high SII/Th1/Th2 levels exhibited lower survival rates. Altogether, SII, Th1, and Th2 had good predictive value for the diagnosis and prognosis of patients with varying severity of sepsis, with their high levels increasing mortality in septic patients.


Asunto(s)
Sepsis , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T , Humanos , Sepsis/diagnóstico , Sepsis/inmunología , Sepsis/mortalidad , Sepsis/sangre , Pronóstico , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Inflamación/inmunología , Inflamación/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores/sangre
13.
Cell Mol Life Sci ; 81(1): 18, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195959

RESUMEN

Prolonged stimulation of ß-adrenergic receptor (ß-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiomegalia/inducido químicamente , Fibrosis , Insuficiencia Cardíaca/inducido químicamente , Isoproterenol/farmacología , Remodelación Ventricular
14.
Proc Natl Acad Sci U S A ; 119(40): e2207332119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161924

RESUMEN

Rpb1, the largest subunit of RNA polymerase II (RNAPII), is rapidly polyubiquitinated and degraded in response to DNA damage; this process is considered to be a "mechanism of last resort'' employed by cells. The underlying mechanism of this process remains elusive. Here, we uncovered a previously uncharacterized multistep pathway in which the polymerase-associated factor 1 (Paf1) complex (PAF1C, composed of the subunits Ctr9, Paf1, Leo1, Cdc73, and Rtf1) is involved in regulating the RNAPII pool by stimulating Elongin-Cullin E3 ligase complex-mediated Rpb1 polyubiquitination and subsequent degradation by the proteasome following DNA damage. Mechanistically, Spt5 is dephosphorylated following DNA damage, thereby weakening the interaction between the Rtf1 subunit and Spt5, which might be a key step in initiating Rpb1 degradation. Next, Rad26 is loaded onto stalled RNAPII to replace the Spt4/Spt5 complex in an RNAPII-dependent manner and, in turn, recruits more PAF1C to DNA lesions via the binding of Rad26 to the Leo1 subunit. Importantly, the PAF1C, assembled in a Ctr9-mediated manner, coordinates with Rad26 to localize the Elongin-Cullin complex on stalled RNAPII, thereby inducing RNAPII removal, in which the heterodimer Paf1/Leo1 and the subunit Cdc73 play important roles. Together, our results clearly revealed a new role of the intact PAF1C in regulating the RNAPII pool in response to DNA damage.


Asunto(s)
Proteínas Cullin , Daño del ADN , Elonguina , Proteínas Nucleares , ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Elonguina/genética , Elonguina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo
15.
Am J Physiol Cell Physiol ; 326(6): C1590-C1603, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38586878

RESUMEN

Muscular fatty infiltration is a common issue after rotator cuff tears (RCTs), which impair shoulder function. Females suffer a higher prevalence and a more severe degree of muscular fatty infiltration after RCT when compared with males, with the underlying mechanisms remaining unclear. Fibro-adipogenic progenitors (FAPs) are the primary source of muscular fatty infiltration following RCT. Our findings disclose that gender-specific disparities in muscular fatty infiltration are linked to mTOR/ULK1-mediated autophagy of FAPs. Decreased autophagic activity contributes to adipogenic differentiation in female FAPs after RCT. Furthermore, metformin could enhance mTOR/ULK1-mediated autophagic processes of FAPs, thereby alleviating fatty infiltration and improving shoulder functionality after RCT. Together, our study reveals that gender differences in muscular fatty infiltration arise from distinct autophagic activities. Metformin could be a promising noninvasive intervention to ameliorate muscular fatty infiltration of RCT.NEW & NOTEWORTHY The current study demonstrated that gender-specific disparities in muscular fatty infiltration are attributed to mTOR/ULK1-mediated autophagy of FAPs. Decreased autophagic activity contributes to adipogenic differentiation in female FAPs after RCT. Moreover, metformin could enhance mTOR/ULK1-mediated autophagic processes of FAPs, thereby alleviating fatty infiltration and improving shoulder functionality after RCT. Therefore, metformin could be a promising noninvasive intervention to ameliorate muscular fatty infiltration of RCT.


Asunto(s)
Adipogénesis , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Metformina , Lesiones del Manguito de los Rotadores , Serina-Treonina Quinasas TOR , Animales , Autofagia/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Metformina/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Lesiones del Manguito de los Rotadores/metabolismo , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/tratamiento farmacológico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
Br J Cancer ; 130(11): 1744-1757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582810

RESUMEN

BACKGROUND: Mitochondrial dynamics play a fundamental role in determining stem cell fate. However, the underlying mechanisms of mitochondrial dynamics in the stemness acquisition of cancer cells are incompletely understood. METHODS: Metabolomic profiling of cells were analyzed by MS/MS. The genomic distribution of H3K27me3 was measured by CUT&Tag. Oral squamous cell carcinoma (OSCC) cells depended on glucose or glutamine fueling TCA cycle were monitored by 13C-isotope tracing. Organoids and tumors from patients and mice were treated with DRP1 inhibitors mdivi-1, ferroptosis inducer erastin, or combination with mdivi-1 and erastin to evaluate treatment effects. RESULTS: Mitochondria of OSCC stem cells own fragment mitochondrial network and DRP1 is required for maintenance of their globular morphology. Imbalanced mitochondrial dynamics induced by DRP1 knockdown suppressed stemness of OSCC cells. Elongated mitochondria increased α-ketoglutarate levels and enhanced glutaminolysis to fuel the TCA cycle by increasing glutamine transporter ASCT2 expression. α-KG promoted the demethylation of histone H3K27me3, resulting in downregulation of SNAI2 associated with stemness and EMT. Significantly, suppressing DRP1 enhanced the anticancer effects of ferroptosis. CONCLUSION: Our study reveals a novel mechanism underlying mitochondrial dynamics mediated cancer stemness acquisition and highlights the therapeutic potential of mitochondria elongation to increase the susceptibility of cancer cells to ferroptosis.


Asunto(s)
Carcinoma de Células Escamosas , Dinaminas , Ferroptosis , Glutamina , Mitocondrias , Dinámicas Mitocondriales , Neoplasias de la Boca , Células Madre Neoplásicas , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/tratamiento farmacológico , Animales , Dinaminas/antagonistas & inhibidores , Dinaminas/genética , Dinaminas/metabolismo , Ratones , Glutamina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Dinámicas Mitocondriales/efectos de los fármacos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Ciclo del Ácido Cítrico/efectos de los fármacos , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Ácidos Cetoglutáricos/metabolismo , Quinazolinonas/farmacología , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Piperazinas/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
17.
Am J Transplant ; 24(3): 391-405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37913871

RESUMEN

In clinical organ transplantation, donor and recipient ages may differ substantially. Old donor organs accumulate senescent cells that have the capacity to induce senescence in naïve cells. We hypothesized that the engraftment of old organs may induce senescence in younger recipients, promoting age-related pathologies. When performing isogeneic cardiac transplants between age-mismatched C57BL/6 old donor (18 months) mice and young and middle-aged C57BL/6 (3- or 12- month-old) recipients , we observed augmented frequencies of senescent cells in draining lymph nodes, adipose tissue, livers, and hindlimb muscles 30 days after transplantation. These observations went along with compromised physical performance and impaired spatial learning and memory abilities. Systemic levels of the senescence-associated secretory phenotype factors, including mitochondrial DNA (mt-DNA), were elevated in recipients. Of mechanistic relevance, injections of mt-DNA phenocopied effects of age-mismatched organ transplantation on accelerating aging. Single treatment of old donor animals with senolytics prior to transplantation attenuated mt-DNA release and improved physical capacities in young recipients. Collectively, we show that transplanting older organs induces senescence in transplant recipients, resulting in compromised physical and cognitive capacities. Depleting senescent cells with senolytics, in turn, represents a promising approach to improve outcomes of older organs.


Asunto(s)
Senescencia Celular , Trasplante de Órganos , Animales , Ratones , Senoterapéuticos , Ratones Endogámicos C57BL , Trasplante de Órganos/efectos adversos , ADN/farmacología , Envejecimiento/fisiología
18.
Anal Chem ; 96(21): 8406-8415, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728057

RESUMEN

In this study, we present a simple, highly sensitive, and selective colorimetric method for detecting sulfur mustard (SM) and its simulants. This method relies on a nucleophilic substitution reaction between derivatives of 4-(p-nitrobenzyl)pyridine (NBP) and SM and subsequent treatment with an external base, resulting in a visible response. This reaction exhibits an impressively low detection threshold by the naked eye, as low as 10 ppm at room temperature. In contrast to the conventional use of NBP for detecting other alkylating agents, such as nitrogen mustard, our approach eliminates the need for prolonged heating or intricate extraction processes. Both computational and experimental investigations underscore the significance of water within our detection medium as it stabilizes crucial episulfonium cation intermediates. Furthermore, we demonstrate the practical applicability of this sensor by incorporating it onto cellulose and silica surfaces, which may provide guidance for the design and development of solid-state SM detectors.

19.
J Intern Med ; 295(5): 634-650, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38439117

RESUMEN

BACKGROUND: The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS: In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS: We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION: Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Femenino , Humanos , Masculino , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/epidemiología , Linfocitos B , Recurrencia
20.
Small ; 20(28): e2311055, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295001

RESUMEN

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA